75 research outputs found

    End-User Development of Voice User Interfaces based on Web content

    Get PDF
    Voice Assistants, and particularly the latest gadgets called smart speakers, allow end users to interact with applications by means of voice commands. As usual, end users are able to install applications (also called skills) that are available in repositories and fulfill multiple purposes. In this work we present an end-user environment to define skills for voice assistants based on the extraction of Web content and their organization into different voice navigation patterns. We describe the approach, the end-user development environment, and finally we present some case studies based on Alexa and Amazon Echo

    The Frequency Following Response (FFR) May Reflect Pitch-Bearing Information But is Not a Direct Representation of Pitch

    Get PDF
    The frequency following response (FFR), a scalp-recorded measure of phase-locked brainstem activity, is often assumed to reflect the pitch of sounds as perceived by humans. In two experiments, we investigated the characteristics of the FFR evoked by complex tones. FFR waveforms to alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. In experiment 1, frequency-shifted complex tones, with all harmonics shifted by the same amount in Hertz, were presented diotically. Only the autocorrelation functions (ACFs) of the subtraction-FFR waveforms showed a peak at a delay shifted in the direction of the expected pitch shifts. This expected pitch shift was also present in the ACFs of the output of an auditory nerve model. In experiment 2, the components of a harmonic complex with harmonic numbers 2, 3, and 4 were presented either to the same ear (“mono”) or the third harmonic was presented contralaterally to the ear receiving the even harmonics (“dichotic”). In the latter case, a pitch corresponding to the missing fundamental was still perceived. Monaural control conditions presenting only the even harmonics (“2 + 4”) or only the third harmonic (“3”) were also tested. Both the subtraction and the addition waveforms showed that (1) the FFR magnitude spectra for “dichotic” were similar to the sum of the spectra for the two monaural control conditions and lacked peaks at the fundamental frequency and other distortion products visible for “mono” and (2) ACFs for “dichotic” were similar to those for “2 + 4” and dissimilar to those for “mono.” The results indicate that the neural responses reflected in the FFR preserve monaural temporal information that may be important for pitch, but provide no evidence for any additional processing over and above that already present in the auditory periphery, and do not directly represent the pitch of dichotic stimuli

    Across-Channel Timing Differences as a Potential Code for the Frequency of Pure Tones

    Get PDF
    When a pure tone or low-numbered harmonic is presented to a listener, the resulting travelling wave in the cochlea slows down at the portion of the basilar membrane (BM) tuned to the input frequency due to the filtering properties of the BM. This slowing is reflected in the phase of the response of neurons across the auditory nerve (AN) array. It has been suggested that the auditory system exploits these across-channel timing differences to encode the pitch of both pure tones and resolved harmonics in complex tones. Here, we report a quantitative analysis of previously published data on the response of guinea pig AN fibres, of a range of characteristic frequencies, to pure tones of different frequencies and levels. We conclude that although the use of across-channel timing cues provides an a priori attractive and plausible means of encoding pitch, many of the most obvious metrics for using that cue produce pitch estimates that are strongly influenced by the overall level and therefore are unlikely to provide a straightforward means for encoding the pitch of pure tones

    Responses to Diotic, Dichotic, and Alternating Phase Harmonic Stimuli in the Inferior Colliculus of Guinea Pigs

    Get PDF
    Humans perceive a harmonic series as a single auditory object with a pitch equivalent to the fundamental frequency (F0) of the series. When harmonics are presented to alternate ears, the repetition rate of the waveform at each ear doubles. If the harmonics are resolved, then the pitch perceived is still equivalent to F0, suggesting the stimulus is binaurally integrated before pitch is processed. However, unresolved harmonics give rise to the doubling of pitch which would be expected from monaural processing (Bernstein and Oxenham, J. Acoust. Soc. Am., 113:3323–3334, 2003). We used similar stimuli to record responses of multi-unit clusters in the central nucleus of the inferior colliculus (IC) of anesthetized guinea pigs (urethane supplemented by fentanyl/fluanisone) to determine the nature of the representation of harmonic stimuli and to what extent there was binaural integration. We examined both the temporal and rate-tuning of IC clusters and found no evidence for binaural integration. Stimuli comprised all harmonics below 10 kHz with fundamental frequencies (F0) from 50 to 400 Hz in half-octave steps. In diotic conditions, all the harmonics were presented to both ears. In dichotic conditions, odd harmonics were presented to one ear and even harmonics to the other. Neural characteristic frequencies (CF, n = 85) were from 0.2 to 14.7 kHz; 29 had CFs below 1 kHz. The majority of clusters responded predominantly to the contralateral ear, with the dominance of the contralateral ear increasing with CF. With diotic stimuli, over half of the clusters (58%) had peaked firing rate vs. F0 functions. The most common peak F0 was 141 Hz. Almost all (98%) clusters phase locked diotically to an F0 of 50 Hz, and approximately 40% of clusters still phase locked significantly (Rayleigh coefficient >13.8) at the highest F0 tested (400 Hz). These results are consistent with the previous reports of responses to amplitude-modulated stimuli. Clusters phase locked significantly at a frequency equal to F0 for contralateral and diotic stimuli but at 2F0 for dichotic stimuli. We interpret these data as responses following the envelope periodicity in monaural channels rather than as a binaurally integrated representation

    Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation

    Get PDF
    Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing

    Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise

    Get PDF
    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies

    An Experimental Time-Sharing System

    No full text
    corecore