2,914 research outputs found

    Reduced mechanical efficiency in left-ventricular trabeculae of the spontaneously hypertensive rat.

    Get PDF
    Long-term systemic arterial hypertension, and its associated compensatory response of left-ventricular hypertrophy, is fatal. This disease leads to cardiac failure and culminates in death. The spontaneously hypertensive rat (SHR) is an excellent animal model for studying this pathology, suffering from ventricular failure beginning at about 18 months of age. In this study, we isolated left-ventricular trabeculae from SHR-F hearts and contrasted their mechanoenergetic performance with those from nonfailing SHR (SHR-NF) and normotensive Wistar rats. Our results show that, whereas the performance of the SHR-F differed little from that of the SHR-NF, both SHR groups performed less stress-length work than that of Wistar trabeculae. Their lower work output arose from reduced ability to produce sufficient force and shortening. Neither their heat production nor their enthalpy output (the sum of work and heat), particularly the energy cost of Ca(2+) cycling, differed from that of the Wistar controls. Consequently, mechanical efficiency (the ratio of work to change of enthalpy) of both SHR groups was lower than that of the Wistar trabeculae. Our data suggest that in hypertension-induced left-ventricular hypertrophy, the mechanical performance of the tissue is compromised such that myocardial efficiency is reduced

    Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane

    Get PDF
    Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane

    Right Ventricle Has Normal Myofilament Function But Shows Perturbations in the Expression of Extracellular Matrix Genes in Patients With Tetralogy of Fallot Undergoing Pulmonary Valve Replacement

    Get PDF
    BACKGROUND: Patients with repair of tetralogy of Fallot (rToF) who are approaching adulthood often exhibit pulmonary valve regurgitation, leading to right ventricle (RV) dilatation and dysfunction. The regurgitation can be corrected by pulmonary valve replacement (PVR), but the optimal surgical timing remains under debate, mainly because of the poorly understood nature of RV remodeling in patients with rToF. The goal of this study was to probe for pathologic molecular, cellular, and tissue changes in the myocardium of patients with rToF at the time of PVR. METHODS AND RESULTS: We measured contractile function of permeabilized myocytes, collagen content of tissue samples, and the expression of mRNA and selected proteins in RV tissue samples from patients with rToF undergoing PVR for severe pulmonary valve regurgitation. The data were compared with nondiseased RV tissue from unused donor hearts. Contractile performance and passive stiffness of the myofilaments in permeabilized myocytes were similar in rToF‐PVR and RV donor samples, as was collagen content and cross‐linking. The patients with rToF undergoing PVR had enhanced mRNA expression of genes associated with connective tissue diseases and tissue remodeling, including the small leucine‐rich proteoglycans ASPN (asporin), LUM (lumican), and OGN (osteoglycin), although their protein levels were not significantly increased. CONCLUSIONS: RV myofilaments from patients with rToF undergoing PVR showed no functional impairment, but the changes in extracellular matrix gene expression may indicate the early stages of remodeling. Our study found no evidence of major damage at the cellular and tissue levels in the RV of patients with rToF who underwent PVR according to current clinical criteria

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Chemical treatment enhances skipping of a mutated exon in the dystrophin gene

    Get PDF
    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by a loss of the dystrophin protein. Control of dystrophin mRNA splicing to convert severe DMD to a milder phenotype is attracting much attention. Here we report a dystrophinopathy patient who has a point mutation in exon 31 of the dystrophin gene. Although the mutation generates a stop codon, a small amount of internally deleted, but functional, dystrophin protein is produced in the patient cells. An analysis of the mRNA reveals that the mutation promotes exon skipping and restores the open reading frame of dystrophin. Presumably, the mutation disrupts an exonic splicing enhancer and creates an exonic splicing silencer. Therefore, we searched for small chemicals that enhance exon skipping, and found that TG003 promotes the skipping of exon 31 in the endogenous dystrophin gene in a dose-dependent manner and increases the production of the dystrophin protein in the patient's cells

    Solving parabolic equations on the unit sphere via Laplace transforms and radial basis functions

    Full text link
    We propose a method to construct numerical solutions of parabolic equations on the unit sphere. The time discretization uses Laplace transforms and quadrature. The spatial approximation of the solution employs radial basis functions restricted to the sphere. The method allows us to construct high accuracy numerical solutions in parallel. We establish L2L_2 error estimates for smooth and nonsmooth initial data, and describe some numerical experiments.Comment: 26 pages, 1 figur

    Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control

    Get PDF
    DNA replication stress is a source of genomic instability. Here we identify ​changed mutation rate 1 (​Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that ​Cmr1—together with ​Mrc1/​Claspin, ​Pph3, the chaperonin containing ​TCP1 (CCT) and 25 other proteins—define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to ​Cmr1, its human orthologue ​WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that ​Cmr1/​WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins

    Synthesizing Coupled 3D Face Modalities by Trunk-Branch Generative Adversarial Networks

    Full text link
    Generating realistic 3D faces is of high importance for computer graphics and computer vision applications. Generally, research on 3D face generation revolves around linear statistical models of the facial surface. Nevertheless, these models cannot represent faithfully either the facial texture or the normals of the face, which are very crucial for photo-realistic face synthesis. Recently, it was demonstrated that Generative Adversarial Networks (GANs) can be used for generating high-quality textures of faces. Nevertheless, the generation process either omits the geometry and normals, or independent processes are used to produce 3D shape information. In this paper, we present the first methodology that generates high-quality texture, shape, and normals jointly, which can be used for photo-realistic synthesis. To do so, we propose a novel GAN that can generate data from different modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition the generation on the expression and create faces with various facial expressions. The qualitative results shown in this paper are compressed due to size limitations, full-resolution results and the accompanying video can be found in the supplementary documents. The code and models are available at the project page: https://github.com/barisgecer/TBGAN.Comment: Check project page: https://github.com/barisgecer/TBGAN for the full resolution results and the accompanying vide
    corecore