68 research outputs found
SNPs Occur in Regions with Less Genomic Sequence Conservation
Rates of SNPs (single nucleotide polymorphisms) and cross-species genomic sequence conservation reflect intra- and inter-species variation, respectively. Here, I report SNP rates and genomic sequence conservation adjacent to mRNA processing regions and show that, as expected, more SNPs occur in less conserved regions and that functional regions have fewer SNPs. Results are confirmed using both mouse and human data. Regions include protein start codons, 3′ splice sites, 5′ splice sites, protein stop codons, predicted miRNA binding sites, and polyadenylation sites. Throughout, SNP rates are lower and conservation is higher at regulatory sites. Within coding regions, SNP rates are highest and conservation is lowest at codon position three and the fewest SNPs are found at codon position two, reflecting codon degeneracy for amino acid encoding. Exon splice sites show high conservation and very low SNP rates, reflecting both splicing signals and protein coding. Relaxed constraint on the codon third position is dramatically seen when separating exonic SNP rates based on intron phase. At polyadenylation sites, a peak of conservation and low SNP rate occurs from 30 to 17 nt preceding the site. This region is highly enriched for the sequence AAUAAA, reflecting the location of the conserved polyA signal. miRNA 3′ UTR target sites are predicted incorporating interspecies genomic sequence conservation; SNP rates are low in these sites, again showing fewer SNPs in conserved regions. Together, these results confirm that SNPs, reflecting recent genetic variation, occur more frequently in regions with less evolutionarily conservation
Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization
BACKGROUND
The genomics era has produced an arsenal of resources from sequenced organisms allowing researchers to target species that do not have comparable mapping and sequence information. These new "non-model" organisms offer unique opportunities to examine environmental effects on genomic patterns and processes. Here we use comparative mapping as a first step in characterizing the genome organization of a novel animal model, the white-throated sparrow (Zonotrichia albicollis), which occurs as white or tan morphs that exhibit alternative behaviors and physiology. Morph is determined by the presence or absence of a complex chromosomal rearrangement. This species is an ideal model for behavioral genomics because the association between genotype and phenotype is absolute, making it possible to identify the genomic bases of phenotypic variation.
FINDINGS
We initiated a genomic study in this species by characterizing the white-throated sparrow BAC library via filter hybridization with overgo probes designed for the chicken, turkey, and zebra finch. Cross-species hybridization resulted in 640 positive sparrow BACs assigned to 77 chicken loci across almost all macro-and microchromosomes, with a focus on the chromosomes associated with morph. Out of 216 overgos, 36% of the probes hybridized successfully, with an average number of 3.0 positive sparrow BACs per overgo.
CONCLUSIONS
These data will be utilized for determining chromosomal architecture and for fine-scale mapping of candidate genes associated with phenotypic differences. Our research confirms the utility of interspecies hybridization for developing comparative maps in other non-model organisms
Annotation of protein residues based on a literature analysis: cross-validation against UniProtKb
<p>Abstract</p> <p>Background</p> <p>A protein annotation database, such as the Universal Protein Resource knowledge base (UniProtKb), is a valuable resource for the validation and interpretation of predicted 3D structure patterns in proteins. Existing studies have focussed on point mutation extraction methods from biomedical literature which can be used to support the time consuming work of manual database curation. However, these methods were limited to point mutation extraction and do not extract features for the annotation of proteins at the residue level.</p> <p>Results</p> <p>This work introduces a system that identifies protein residues in MEDLINE abstracts and annotates them with features extracted from the context written in the surrounding text. MEDLINE abstract texts have been processed to identify protein mentions in combination with taxonomic species and protein residues (F1-measure 0.52). The identified protein-species-residue triplets have been validated and benchmarked against reference data resources (UniProtKb, average F1-measure of 0.54). Then, contextual features were extracted through shallow and deep parsing and the features have been classified into predefined categories (F1-measure ranges from 0.15 to 0.67). Furthermore, the feature sets have been aligned with annotation types in UniProtKb to assess the relevance of the annotations for ongoing curation projects. Altogether, the annotations have been assessed automatically and manually against reference data resources.</p> <p>Conclusion</p> <p>This work proposes a solution for the automatic extraction of functional annotation for protein residues from biomedical articles. The presented approach is an extension to other existing systems in that a wider range of residue entities are considered and that features of residues are extracted as annotations.</p
Contribution of primary motor cortex to compensatory balance reactions
<p>Abstract</p> <p>Background</p> <p>Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.</p> <p>Results</p> <p>Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.</p> <p>Conclusions</p> <p>Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.</p
A multilocus assay reveals high nucleotide diversity and limited differentiation among Scandinavian willow grouse (Lagopus lagopus)
<p>Abstract</p> <p>Background</p> <p>There is so far very little data on autosomal nucleotide diversity in birds, except for data from the domesticated chicken and some passerines species. Estimates of nucleotide diversity reported so far in birds have been high (~10<sup>-3</sup>) and a likely explanation for this is the generally higher effective population sizes compared to mammals. In this study, the level of nucleotide diversity has been examined in the willow grouse, a non-domesticated bird species from the order Galliformes, which also holds the chicken. The willow grouse (<it>Lagopus lagopus</it>) has an almost circumpolar distribution but is absent from Greenland and the north Atlantic islands. It primarily inhabits tundra, forest edge habitats and sub-alpine vegetation. Willow grouse are hunted throughout its range, and regionally it is a game bird of great cultural and economical importance.</p> <p>Results</p> <p>We sequenced 18 autosomal protein coding loci from approximately 15–18 individuals per population. We found a total of 127 SNP's, which corresponds to 1 SNP every 51 bp. 26 SNP's were amino acid replacement substitutions. Total nucleotide diversity (<it>π</it><sub><it>t</it></sub>) was between 1.30 × 10<sup>-4 </sup>and 7.66 × 10<sup>-3 </sup>(average <it>π</it><sub><it>t </it></sub>= 2.72 × 10<sup>-3 </sup>± 2.06 × 10<sup>-3</sup>) and silent nucleotide diversity varied between 4.20 × 10<sup>-4</sup>and 2.76 × 10<sup>-2 </sup>(average <it>π</it><sub><it>S </it></sub>= 9.22 × 10<sup>-3 </sup>± 7.43 × 10<sup>-4</sup>). The synonymous diversity is approximately 20 times higher than in humans and two times higher than in chicken. Non-synonymous diversity was on average 18 times lower than the synonymous diversity and varied between 0 and 4.90 × 10<sup>-3 </sup>(average <it>π</it><sub><it>a </it></sub>= 5.08 × 10<sup>-4 </sup>± 7.43 × 10<sup>3</sup>), which suggest that purifying selection is strong in these genes. <it>F</it><sub>ST </sub>values based on synonymous SNP's varied between -5.60 × 10<sup>-4 </sup>and 0.20 among loci and revealed low levels of differentiation among the four localities, with an overall value of <it>F</it><sub>ST </sub>= 0.03 (95% CI: 0.006 – 0.057) over 60 unlinked loci. Non-synonymous SNP's gave similar results. Low levels of linkage disequilibrium were observed within genes, with an average r<sup>2 </sup>= 0.084 ± 0.110, which is expected for a large outbred population with no population differentiation. The mean per site per generation recombination parameter (ρ) was comparably high (0.028 ± 0.018), indicating high recombination rates in these genes.</p> <p>Conclusion</p> <p>We found unusually high levels of nucleotide diversity in the Scandinavian willow grouse as well as very little population structure among localities with up to 1647 km distance. There are also low levels of linkage disequilibrium within the genes and the population recombination rate is high, which is indicative of an old panmictic population, where recombination has had time to break up any haplotype blocks. The non-synonymous nucleotide diversity is low compared with the silent, which is in agreement with effective purifying selection, possibly due to the large effective population size.</p
Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing
Background: The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations
An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae
Background: Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings: We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance: YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org.This work was supported by grants from the N.S.F. (IIS-0325116, EIA-0219061), N.I.H. (GM06779-01,GM076536-01), Welch (F-1515), and a Packard Fellowship (EMM). These agencies were not involved in the design and conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript.Cellular and Molecular Biolog
Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship
International audienceBACKGROUND: Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties. PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an important role in protein - protein interactions. METHODOLOGY/PRINCIPAL FINDINGS: A major factor that limits the study of PPII is that its assignment cannot be carried out with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to the assignment and only PPII helices of at least 2 residues length are defined. CONCLUSIONS/SIGNIFICANCE: The simple rules designed in this study for characterizing PPII conformation, lead to the assignment of 5% of all amino as PPII. Sequence - structure relationships associated with PPII, defined by the different SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and thus opens a simple way for further analysis in this field
Population genomics of marine zooplankton
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that
distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of
population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has
slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated
species and diversity of genomic architecture, including highly-replicated genomes of many
crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is
transforming our ability to analyze population genetics and connectivity of marine zooplankton, and
providing new understanding and different answers than earlier analyses, which typically used
mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that,
despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic
populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population
connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are
critically needed to allow further examination of micro-evolution and local adaptation, including
identification of genes that show evidence of selection. These new tools will also enable further
examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to
discriminate genetic “noise” in large and patchy populations from local adaptation to environmental
conditions and change.Support was provided by the
US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to
IS and MC was provided by Nord University (Norway)
Behavioral correlations across activity, mating, exploration, aggression, and antipredator contexts in the European house cricket, Acheta domesticus
Recently, there has been increasing interest in behavioral syndrome research across a range of taxa. Behavioral syndromes are suites of correlated behaviors that are expressed either within a given behavioral context (e. g., mating) or between different contexts (e. g., foraging and mating). Syndrome research holds profound implications for animal behavior as it promotes a holistic view in which seemingly autonomous behaviors may not evolve independently, but as a "suite" or "package." We tested whether laboratory-reared male and female European house crickets, Acheta domesticus, exhibited behavioral syndromes by quantifying individual differences in activity, exploration, mate attraction, aggressiveness, and antipredator behavior. To our knowledge, our study is the first to consider such a breadth of behavioral traits in one organism using the syndrome framework. We found positive correlations across mating, exploratory, and antipredatory contexts, but not aggression and general activity. These behavioral differences were not correlated with body size or condition, although age explained some of the variation in motivation to mate. We suggest that these across-context correlations represent a boldness syndrome as individual risk-taking and exploration was central to across-context mating and antipredation correlations in both sexes. © Springer-Verlag 2009
- …