2,984 research outputs found

    Concrete Semantics with Coq and CoqHammer

    Full text link
    The "Concrete Semantics" book gives an introduction to imperative programming languages accompanied by an Isabelle/HOL formalization. In this paper we discuss a re-formalization of the book using the Coq proof assistant. In order to achieve a similar brevity of the formal text we extensively use CoqHammer, as well as Coq Ltac-level automation. We compare the formalization efficiency, compactness, and the readability of the proof scripts originating from a Coq re-formalization of two chapters from the book

    ENIGMA: Efficient Learning-based Inference Guiding Machine

    Full text link
    ENIGMA is a learning-based method for guiding given clause selection in saturation-based theorem provers. Clauses from many proof searches are classified as positive and negative based on their participation in the proofs. An efficient classification model is trained on this data, using fast feature-based characterization of the clauses . The learned model is then tightly linked with the core prover and used as a basis of a new parameterized evaluation heuristic that provides fast ranking of all generated clauses. The approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing a large increase of E's performance.Comment: Submitted to LPAR 201

    ProofWatch: Watchlist Guidance for Large Theories in E

    Full text link
    Watchlist (also hint list) is a mechanism that allows related proofs to guide a proof search for a new conjecture. This mechanism has been used with the Otter and Prover9 theorem provers, both for interactive formalizations and for human-assisted proving of open conjectures in small theories. In this work we explore the use of watchlists in large theories coming from first-order translations of large ITP libraries, aiming at improving hammer-style automation by smarter internal guidance of the ATP systems. In particular, we (i) design watchlist-based clause evaluation heuristics inside the E ATP system, and (ii) develop new proof guiding algorithms that load many previous proofs inside the ATP and focus the proof search using a dynamically updated notion of proof matching. The methods are evaluated on a large set of problems coming from the Mizar library, showing significant improvement of E's standard portfolio of strategies, and also of the previous best set of strategies invented for Mizar by evolutionary methods.Comment: 19 pages, 10 tables, submitted to ITP 2018 at FLO

    Advanced Multilevel Node Separator Algorithms

    Full text link
    A node separator of a graph is a subset S of the nodes such that removing S and its incident edges divides the graph into two disconnected components of about equal size. In this work, we introduce novel algorithms to find small node separators in large graphs. With focus on solution quality, we introduce novel flow-based local search algorithms which are integrated in a multilevel framework. In addition, we transfer techniques successfully used in the graph partitioning field. This includes the usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as highly localized local search and iterated multilevel cycles to improve solution quality even further. Experiments indicate that flow-based local search algorithms on its own in a multilevel framework are already highly competitive in terms of separator quality. Adding additional local search algorithms further improves solution quality. Our strongest configuration almost always outperforms competing systems while on average computing 10% and 62% smaller separators than Metis and Scotch, respectively

    Associations between health-related quality of life, physical function and fear of falling in older fallers receiving home care

    Get PDF
    Falls and injuries in older adults have significant consequences and costs, both personal and to society. Although having a high incidence of falls, high prevalence of fear of falling and a lower quality of life, older adults receiving home care are underrepresented in research on older fallers. The objective of this study is to determine the associations between health-related quality of life (HRQOL), fear of falling and physical function in older fallers receiving home care

    Nitride Single Photon Sources

    Get PDF
    Single photon sources are a key enabling technology for quantum communications, and in the future more advanced quantum light sources may underpin other quantum information processing paradigms such as linear optical quantum computation. In considering possible practical implementations of future quantum technologies, the nitride materials system is attractive since nitride quantum dots (QDs) achieve single photon emission at easily accessible temperatures [1], potentially enabling the implementation of quantum key distribution paradigms in contexts where cryogenic cooling is impracticable

    Theory of current-driven motion of Skyrmions and spirals in helical magnets

    Full text link
    We study theoretically the dynamics of the spin textures, i.e., Skyrmion crystal (SkX) and spiral structure (SS), in two-dimensional helical magnets under external current. By numerically solving the Landau-Lifshitz-Gilbert equation, it is found that (i) the critical current density of the motion is much lower for SkX compared with SS in agreement with the recent experiment, (ii) there is no intrinsic pinning effect for SkX and the deformation of the internal structure of Skyrmion reduces the pinning effect dramatically, (iii) the Bragg intensity of SkX shows strong time-dependence as can be observed by neutron scattering experiment.Comment: 4 pages, 3 figure

    The magnetic nature of disk accretion onto black holes

    Get PDF
    Although disk accretion onto compact objects - white dwarfs, neutron stars, and black holes - is central to much of high energy astrophysics, the mechanisms which enable this process have remained observationally elusive. Accretion disks must transfer angular momentum for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can in principle both transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655-40 must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modeling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.Comment: 15 pages, 2 color figures, accepted for publication in Nature. Supplemental materials may be obtained by clicking http://www.astro.lsa.umich.edu/~jonmm/nature1655.p
    • 

    corecore