120 research outputs found
A Policy-into-Practice Intervention to Increase the Uptake of Evidence-Based Management of Low Back Pain in Primary Care: A Prospective Cohort Study
BACKGROUND: Persistent non-specific low back pain (nsLBP) is poorly understood by the general community, by educators, researchers and health professionals, making effective care problematic. This study evaluated the effectiveness of a policy-into-practice intervention developed for primary care physicians (PCPs). METHODS: To encourage PCPs to adopt practical evidence-based approaches and facilitate time-efficient, integrated management of patients with nsLBP, we developed an interdisciplinary evidence-based, practical pain education program (gPEP) based on a contemporary biopsychosocial framework. One hundred and twenty six PCPs from primary care settings in Western Australia were recruited. PCPs participated in a 6.5-hour gPEP. Self-report measures recorded at baseline and at 2 months post-intervention included PCPs' attitudes, beliefs (modified Health Care Providers Pain and Impairment Relationship Scale (HC-PAIRS), evidence-based clinical practices (knowledge and skills regarding nsLBP management: 5-point Likert scale with 1 = nil and 5 = excellent) and practice behaviours (recommendations based on a patient vignette; 5-point Likert scale). RESULTS: Ninety one PCPs participated (attendance rate of 72%; post-intervention response rate 88%). PCP-responders adopted more positive, guideline-consistent beliefs, evidenced by clinically significant HC-PAIRS score differences (mean change = -5.6±8.2, p<0.0001; 95% confidence interval: -7.6 to -3.6) and significant positive shifts on all measures of clinical knowledge and skills (p<0.0001 for all questions). Self management strategies were recommended more frequently post-intervention. The majority of responders who were guideline-inconsistent for work and bed rest recommendations (82% and 62% respectively) at pre-intervention, gave guideline-consistent responses at post-intervention. CONCLUSION: An interprofessional pain education program set within a framework that aligns health policy and practice, encourages PCPs to adopt more self-reported evidence-based attitudes, beliefs and clinical behaviours in their management of patients with nsLBP. However, further research is required to determine cost effectiveness of this approach when compared with other modes of educational delivery and to examine PCP behaviours in actual clinical practice
Novel variants in the PRDX6 Gene and the risk of Acute Lung Injury following major trauma
<p>Abstract</p> <p>Background</p> <p>Peroxiredoxin 6 (<it>PRDX6</it>) is involved in redox regulation of the cell and is thought to be protective against oxidant injury. Little is known about genetic variation within the PRDX6 gene and its association with acute lung injury (ALI). In this study we sequenced the <it>PRDX6 </it>gene to uncover common variants, and tested association with ALI following major trauma.</p> <p>Methods</p> <p>To examine the extent of variation in the <it>PRDX6 </it>gene, we performed direct sequencing of the 5' UTR, exons, introns and the 3' UTR in 25 African American cases and controls and 23 European American cases and controls (selected from a cohort study of major trauma), which uncovered 80 SNPs. <it>In silico </it>modeling was performed using Patrocles and Transcriptional Element Search System (TESS). Thirty seven novel and tagging SNPs were tested for association with ALI compared with ICU at-risk controls who did not develop ALI in a cohort study of 259 African American and 254 European American subjects that had been admitted to the ICU with major trauma.</p> <p>Results</p> <p>Resequencing of critically ill subjects demonstrated 43 novel SNPs not previously reported. Coding regions demonstrated no detectable variation, indicating conservation of the protein. Block haplotype analyses reveal that recombination rates within the gene seem low in both Caucasians and African Americans. Several novel SNPs appeared to have the potential for functional consequence using <it>in silico </it>modeling. Chi<sup>2 </sup>analysis of ALI incidence and genotype showed no significant association between the SNPs in this study and ALI. Haplotype analysis did not reveal any association beyond single SNP analyses.</p> <p>Conclusions</p> <p>This study revealed novel SNPs within the <it>PRDX6 </it>gene and its 5' and 3' flanking regions via direct sequencing. There was no association found between these SNPs and ALI, possibly due to a low sample size, which was limited to detection of relative risks of 1.93 and above. Future studies may focus on the role of <it>PRDX6 </it>genetic variation in other diseases, where oxidative stress is suspected.</p
An open-label, 1-year extension study of the long-term safety and efficacy of once-daily OROS® hydromorphone in patients with chronic cancer pain
<p>Abstract</p> <p>Background</p> <p>Opioid analgesics have proven efficacy in the short-term management of chronic cancer pain, but data on their long-term use is more limited. OROS<sup>® </sup>hydromorphone is a controlled-release formulation of oral hydromorphone that may be particularly well suited to long-term management of chronic cancer pain because it provides stable plasma concentrations and consistent analgesia with convenient once-daily dosing. The objective of this study (DO-118X) was to characterise the pain control achieved with long-term repeated dosing of OROS<sup>® </sup>hydromorphone in patients with chronic cancer pain.</p> <p>Methods</p> <p>In this multicentre, phase III, open-label, single treatment, 1-year extension study, OROS<sup>® </sup>hydromorphone was administered to 68 patients with moderate-to-severe chronic cancer pain, who had successfully completed a short-term equivalence study, and whose pain was controlled with a stable dose of medication (≥ 8 mg OROS<sup>® </sup>hydromorphone or equivalent controlled-release morphine). Patients were started on the dose of OROS<sup>® </sup>hydromorphone equivalent to the opioid dose on which they achieved dose-stable pain control in the equivalence study; dose adjustments were made as necessary and breakthrough pain medication was permitted. Efficacy was assessed with the Brief Pain Inventory (BPI) and patient and investigator global evaluations of treatment effectiveness. No formal statistical analysis was done.</p> <p>Results</p> <p>The mean (standard deviation) duration of exposure to study medication was 139 (129.9) days and the mean (standard deviation) average daily consumption of OROS<sup>® </sup>hydromorphone was 43.7 (28.14) mg/day. All scores were maintained at a mild to moderate severity throughout the study; however, BPI scores for pain at its worst, pain at its least, pain on average, pain right now, and pain relief were slightly worsened at end point compared with baseline. Mean BPI pain interference with daily activities and patient and investigator global evaluation scores also remained generally stable. Treatment effectiveness was rated as fair to good throughout the study. The most frequently reported adverse events were nausea (n = 24, 35.3%), constipation (n = 22, 32.4%), and vomiting (n = 15, 22.1%).</p> <p>Conclusion</p> <p>The results of this extension study suggest that long-term repeated dosing with once-daily OROS<sup>® </sup>hydromorphone can be beneficial in the continuing management of persistent, moderate-to-severe cancer pain.</p
Intronic Cis-Regulatory Modules Mediate Tissue-Specific and Microbial Control of angptl4/fiaf Transcription
The intestinal microbiota enhances dietary energy harvest leading to increased fat storage in adipose tissues. This effect is caused in part by the microbial suppression of intestinal epithelial expression of a circulating inhibitor of lipoprotein lipase called Angiopoietin-like 4 (Angptl4/Fiaf). To define the cis-regulatory mechanisms underlying intestine-specific and microbial control of Angptl4 transcription, we utilized the zebrafish system in which host regulatory DNA can be rapidly analyzed in a live, transparent, and gnotobiotic vertebrate. We found that zebrafish angptl4 is transcribed in multiple tissues including the liver, pancreatic islet, and intestinal epithelium, which is similar to its mammalian homologs. Zebrafish angptl4 is also specifically suppressed in the intestinal epithelium upon colonization with a microbiota. In vivo transgenic reporter assays identified discrete tissue-specific regulatory modules within angptl4 intron 3 sufficient to drive expression in the liver, pancreatic islet β-cells, or intestinal enterocytes. Comparative sequence analyses and heterologous functional assays of angptl4 intron 3 sequences from 12 teleost fish species revealed differential evolution of the islet and intestinal regulatory modules. High-resolution functional mapping and site-directed mutagenesis defined the minimal set of regulatory sequences required for intestinal activity. Strikingly, the microbiota suppressed the transcriptional activity of the intestine-specific regulatory module similar to the endogenous angptl4 gene. These results suggest that the microbiota might regulate host intestinal Angptl4 protein expression and peripheral fat storage by suppressing the activity of an intestine-specific transcriptional enhancer. This study provides a useful paradigm for understanding how microbial signals interact with tissue-specific regulatory networks to control the activity and evolution of host gene transcription
A path forward in the debate over health impacts of endocrine disrupting chemicals
Several recent publications reflect debate on the issue of “endocrine disrupting chemicals” (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as “endocrine disrupting chemical”, “adverse effects”, and “endocrine system”. The second is focused on elements of hormone action including “potency”, “endpoints”, “timing”, “dose” and “thresholds”. The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate
Chromatin Organization in Sperm May Be the Major Functional Consequence of Base Composition Variation in the Human Genome
Chromatin in sperm is different from that in other cells, with most of the genome packaged by protamines not nucleosomes. Nucleosomes are, however, retained at some genomic sites, where they have the potential to transmit paternal epigenetic information. It is not understood how this retention is specified. Here we show that base composition is the major determinant of nucleosome retention in human sperm, predicting retention very well in both genic and non-genic regions of the genome. The retention of nucleosomes at GC-rich sequences with high intrinsic nucleosome affinity accounts for the previously reported retention at transcription start sites and at genes that regulate development. It also means that nucleosomes are retained at the start sites of most housekeeping genes. We also report a striking link between the retention of nucleosomes in sperm and the establishment of DNA methylation-free regions in the early embryo. Taken together, this suggests that paternal nucleosome transmission may facilitate robust gene regulation in the early embryo. We propose that chromatin organization in the male germline, rather than in somatic cells, is the major functional consequence of fine-scale base composition variation in the human genome. The selective pressure driving base composition evolution in mammals could, therefore, be the need to transmit paternal epigenetic information to the zygote
Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference
<p>Abstract</p> <p>Background</p> <p>Simple sequence repeats (SSRs) have been successfully used for various genetic and evolutionary studies in eukaryotic systems. The eukaryotic model organism <it>Neurospora crassa </it>is an excellent system to study evolution and biological function of SSRs.</p> <p>Results</p> <p>We identified and characterized 2749 SSRs of 963 SSR types in the genome of <it>N. crassa</it>. The distribution of tri-nucleotide (nt) SSRs, the most common SSRs in <it>N. crassa</it>, was significantly biased in exons. We further characterized the distribution of 19 abundant SSR types (AST), which account for 71% of total SSRs in the <it>N. crassa </it>genome, using a Poisson log-linear model. We also characterized the size variation of SSRs among natural accessions using Polymorphic Index Content (PIC) and ANOVA analyses and found that there are genome-wide, chromosome-dependent and local-specific variations. Using polymorphic SSRs, we have built linkage maps from three line-cross populations.</p> <p>Conclusion</p> <p>Taking our computational, statistical and experimental data together, we conclude that 1) the distributions of the SSRs in the sequenced N. crassa genome differ systematically between chromosomes as well as between SSR types, 2) the size variation of tri-nt SSRs in exons might be an important mechanism in generating functional variation of proteins in <it>N. crassa</it>, 3) there are different levels of evolutionary forces in variation of amino acid repeats, and 4) SSRs are stable molecular markers for genetic studies in <it>N. crassa</it>.</p
Advances in structure elucidation of small molecules using mass spectrometry
The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules
- …