32 research outputs found

    Normal modes and discovery of high-order cross-frequencies in the DBV white dwarf GD 358

    Get PDF
    We present a detailed mode identification performed on the 1994 Whole Earth Telescope (WET) run on GD 358. The results are compared with that obtained for the same star from the 1990 WET data. The two temporal spectra show very few qualitative differences, although amplitude changes are seen in most modes, including the disappearance of the mode identified as k=14 in the 1990 data. The excellent coverage and signal-to-noise ratio obtained during the 1994 run lead to the secure identification of combination frequencies up to fourth order, i.e. peaks that are sums or differences of up to four parent frequencies, including a virtually complete set of second-order frequencies, as expected from harmonic distortion. We show how the third-order frequencies are expected to affect the triplet structure of the normal modes by back-interacting with them. Finally, a search for ℓ=2 modes was unsuccessful, not verifying the suspicion that such modes had been uncovered in the 1990 data set

    Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy

    Get PDF
    Helminth parasites such as the nematode Heligmosomoides polygyrus strongly inhibit T helper type 2 (Th2) allergy, as well as colitis and autoimmunity. Here, we show that the soluble excretory/secretory products of H. polygyrus (HES) potently suppress inflammation induced by allergens from the common fungus Alternaria alternata. Alternaria extract, when administered to mice intranasally with ovalbumin (OVA) protein, induces a rapid (1–48 h) innate response while also priming an OVA-specific Th2 response that can be evoked 14 days later by intranasal administration of OVA alone. In this model, HES coadministration with Alternaria/OVA suppressed early IL-33 release, innate lymphoid cell (ILC) production of IL-4, IL-5, and IL-13, and localized eosinophilia. Upon OVA challenge, type 2 ILC (ILC2)/Th2 cytokine production and eosinophilia were diminished in HES-treated mice. HES administration 6 h before Alternaria blocked the allergic response, and its suppressive activity was abolished by heat treatment. Administration of recombinant IL-33 at sensitization with Alternaria/OVA/HES abrogated HES suppression of OVA-specific responses at challenge, indicating that suppression of early Alternaria-induced IL-33 release could be central to the anti-allergic effects of HES. Thus, this helminth parasite targets IL-33 production as part of its armory of suppressive effects, forestalling the development of the type 2 immune response to infection and allergic sensitization

    IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains Helminth Chronicity.

    Get PDF
    Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity

    Cracking the BAFF code.

    Get PDF
    The tumour necrosis factor (TNF) family members B cell activating factor (BAFF) and APRIL (a proliferation-inducing ligand) are crucial survival factors for peripheral B cells. An excess of BAFF leads to the development of autoimmune disorders in animal models, and high levels of BAFF have been detected in the serum of patients with various autoimmune conditions. In this Review, we consider the possibility that in mice autoimmunity induced by BAFF is linked to T cell-independent B cell activation rather than to a severe breakdown of B cell tolerance. We also outline the mechanisms of BAFF signalling, the impact of ligand oligomerization on receptor activation and the progress of BAFF-depleting agents in the clinical setting

    Chronic Helminth Infections Protect Against Allergic Diseases by Active Regulatory Processes

    Get PDF
    Developed countries are suffering from an epidemic rise in immunologic disorders, such as allergy-related diseases and certain autoimmunities. Several studies have demonstrated a negative association between helminth infections and inflammatory diseases (eg, allergy), providing a strong case for the involvement of helminth infections in this respect. However, some studies point in the opposite direction. The discrepancy may be explained by differences in frequency, dose, time, and type of helminth. In this review, new studies are discussed that may support the concept that chronic helminth infections in particular—but not acute infections—are associated with the expression of regulatory networks necessary for downmodulating allergic immune responses to harmless antigens. Furthermore, different components of regulatory networks are highlighted, such as the role of regulatory T and B cells, modulation of dendritic cells, early innate signals from structural cells (eg, epithelial cells), and their individual contributions to protection against allergic diseases. It is of great interest to define and characterize specific helminth molecules that have profound immunomodulatory capacities as targets for therapeutic application in the treatment or prophylaxis of allergic manifestations

    Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung

    Get PDF

    M cell targeting by a Claudin 4 targeting peptide can enhance mucosal IgA responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucosal immune surveillance is thought to be largely achieved through uptake by specialized epithelial M cells. We recently identified Claudin 4 as an M cell target receptor and developed a Claudin 4 targeting peptide (CPE) that can mediate uptake of nanoparticles through Nasal Associated Lymphoid Tissue (NALT) M cells.</p> <p>Methods</p> <p>Recombinant influenza hemagglutinin (HA) and a version with the CPE peptide at the C-terminal end was used to immunize mice by the intranasal route along with a single dose of cholera toxin as an adjuvant. Serum and mucosal IgG and IgA responses were tested for reactivity to HA.</p> <p>Results</p> <p>We found that the recombinant HA was immunogenic on intranasal administration, and inclusion of the CPE targeting peptide induced higher mucosal IgA responses. This mucosal administration also induced systemic serum IgG responses with Th2 skewing, but targeting did not enhance IgG responses, suggesting that the IgG response to mucosal immunization is independent of the effects of CPE M cell targeting.</p> <p>Conclusions</p> <p>M cell targeting mediated by a Claudin 4-specific targeting peptide can enhance mucosal IgA responses above the response to non-targeted mucosal antigen. Since Claudin 4 has also been found to be regulated in human Peyer's patch M cells, the CPE targeting peptide could be a reasonable platform delivery technology for mucosal vaccination.</p
    corecore