518 research outputs found

    Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor.

    Get PDF
    Btk and Etk/BMX are Tec-family non-receptor tyrosine kinases. Btk has previously been reported to be expressed primarily in B cells and has an important role in immune responses and B-cell malignancies. Etk has been shown previously to provide a strong survival and metastasis signal in human prostate cancer cells, and to confer androgen independence and drug resistance. While the role of Etk in prostate carcinogenesis is well established, the functions of Btk in prostate cancer have never been investigated, likely due to the perception that Btk is a hematopoietic, but not epithelial, kinase. Herein, we found that Btk is overexpressed in prostate cancer tissues and prostate cancer cells. The level of Btk in prostate cancer tissues correlates with cancer grades. Knockdown of Btk expression selectively inhibits the growth of prostate cancer cells, but not that of the normal prostate epithelial cells, which express very little Btk. Dual inhibition of Btk and Etk has an additive inhibitory effect on prostate cancer cell growth. To explore Btk and Etk as targets for prostate cancer, we developed a small molecule dual inhibitor of Btk and Etk, CTN06. Treatment of PC3 and other prostate cancer cells, but not immortalized prostate epithelial cells with CTN06 resulted in effective cell killing, accompanied by the attenuation of Btk/Etk signals. The killing effect of CTN06 is more potent than that of commonly used inhibitors against Src, Raf/VEGFR and EGFR. CTN06 induces apoptosis as well as autophagy in human prostate cancer cells, and is a chemo-sensitizer for docetaxel (DTX), a standard of care for metastatic prostate cancer patients. CTN06 also impeded the migration of human prostate cancer cells based on a 'wound healing' assay. The anti-cancer effect of CTN06 was further validated in vivo in a PC3 xenograft mouse model

    Pesticide Leaching from Agricultural Fields with Ridges and Furrows

    Get PDF
    In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows, thus bringing about an extra load of water and pesticide on the furrow soil. A survey of the literature reveals that surface-runoff from ridges to furrows is a well-known phenomenon but that hardly any data are available on the quantities of water and pesticide involved. On the basis of a field experiment with additional sprinkler irrigation, computer simulations were carried out with the Pesticide Emission Assessment at Regional and Local scales model for separate ridge and furrow systems in a humic sandy potato field. Breakthrough curves of bromide ion (as a tracer for water flow) and carbofuran (as example pesticide) were calculated for 1-m depth in the field. Bromide ion leached comparatively fast from the furrow system, while leaching from the ridge system was slower showing a maximum concentration of about half of that for the furrow system. Carbofuran breakthrough from the furrow system began about a month after application and increased steadily to substantial concentrations. Because the transport time of carbofuran in the ridge soil was much longer, no breakthrough occurred in the growing season. The maximum concentration of carbofuran leaching from the ridge–furrow field was computed to be a factor of six times as high as that computed for the corresponding level field. The study shows that the risk of leaching of pesticides via the furrow soil can be substantially higher than that via the corresponding level field soil

    Establishing baseline criteria of cardio-ankle vascular index as a new indicator of arteriosclerosis: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cardio-ankle vascular index (CAVI) has been developed to represent the extent of arteriosclerosis throughout the aorta, femoral artery and tibial artery independent of blood pressure. To practically use CAVI as a diagnostic tool for determining the extent of arteriosclerosis, our study objectives were (1) to establish the baseline CAVI scores by age and gender among cardiovascular disease (CVD) risk-free persons, (2) to compare CAVI scores between genders to test the hypothesis that the extent of arteriosclerosis in men is greater than in women, and (3) to compare CAVI scores between the CVD risk-free group and the CVD high-risk group in order to test the hypothesis that the extent of arteriosclerosis in the CVD high-risk group is greater than in the CVD risk-free group.</p> <p>Methods</p> <p>Study subjects were 32,627 urban residents 20-74 years of age who participated in CVD screening in Japan during 2004-2006. A new device (model VaSera VS-1000) was used to measure CAVI scores. At the time of screening, CVD high-risk persons were defined as those having any clinical abnormalities of CVD, and CVD risk-free persons were defined as those without any clinical abnormalities of CVD. Age-specific average CAVI scores were compared between genders and between the CVD risk-free group and the CVD high-risk group. Student's t-test using two independent samples was applied to a comparison of means between two groups.</p> <p>Results</p> <p>Average age-specific baseline scores of CAVI in the CVD risk-free group linearly increased in both genders as their age increased. Average age-specific baseline scores of CAVI in the CVD risk-free group were significantly greater among men than among women. Average age-specific baseline scores of CAVI in the CVD risk-free group were significantly smaller than those in the CVD high-risk group in both genders after 40 years of age.</p> <p>Conclusions</p> <p>The baseline CAVI scores from the CVD risk-free group are useful for future studies as control values. The CAVI method is a useful tool to screen persons with moderate to advanced levels of arteriosclerosis.</p

    Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours

    Get PDF
    In this study we screened the histone acetyltransferases CBP and PCAF for mutations in human epithelial cancer cell lines and primary tumours. We identified two CBP truncations (both in cell lines), seven PCAF missense variants and four CBP intronic microdeletions. These data suggest that neither gene is commonly inactivated in human epithelial cancers

    Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    Get PDF
    Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.info:eu-repo/semantics/publishedVersio

    Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets

    Get PDF
    Current genome-wide association studies (GWAS) use commercial genotyping microarrays that can assay over a million single nucleotide polymorphisms (SNPs). The number of SNPs is further boosted by advanced statistical genotype-imputation algorithms and large SNP databases for reference human populations. The testing of a huge number of SNPs needs to be taken into account in the interpretation of statistical significance in such genome-wide studies, but this is complicated by the non-independence of SNPs because of linkage disequilibrium (LD). Several previous groups have proposed the use of the effective number of independent markers (Me) for the adjustment of multiple testing, but current methods of calculation for Me are limited in accuracy or computational speed. Here, we report a more robust and fast method to calculate Me. Applying this efficient method [implemented in a free software tool named Genetic type 1 error calculator (GEC)], we systematically examined the Me, and the corresponding p-value thresholds required to control the genome-wide type 1 error rate at 0.05, for 13 Illumina or Affymetrix genotyping arrays, as well as for HapMap Project and 1000 Genomes Project datasets which are widely used in genotype imputation as reference panels. Our results suggested the use of a p-value threshold of ~10−7 as the criterion for genome-wide significance for early commercial genotyping arrays, but slightly more stringent p-value thresholds ~5 × 10−8 for current or merged commercial genotyping arrays, ~10−8 for all common SNPs in the 1000 Genomes Project dataset and ~5 × 10−8 for the common SNPs only within genes

    Cochlin, Intraocular Pressure Regulation and Mechanosensing

    Get PDF
    Fluid shear modulates many biological properties. How shear mechanosensing occurs in the extracellular matrix (ECM) and is transduced into cytoskeletal change remains unknown. Cochlin is an ECM protein of unknown function. Our investigation using a comprehensive spectrum of cutting-edge techniques has resulted in following major findings: (1) over-expression and down-regulation of cochlin increase and decrease intraocular pressure (IOP), respectively. The overexpression was achieved in DBA/2J-Gpnmb+/SjJ using lentiviral vectors, down-regulation was achieved in glaucomatous DBA/2J mice using targeted disruption (cochlin-null mice) and also using lentiviral vector mediated shRNA against cochlin coding region; (2) reintroduction of cochlin in cochlin-null mice increases IOP; (3) injection of exogenous cochlin also increased IOP; (4) increasing perfusion rates increased cochlin multimerization, which reduced the rate of cochlin proteolysis by trypsin and proteinase K; The cochlin multimerization in response to shear stress suggests its potential mechanosensing. Taken together with previous studies, we show cochlin is involved in regulation of intraocular pressure in DBA/2J potentially through mechanosensing of the shear stress
    corecore