26 research outputs found

    Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

    Get PDF
    An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO_{2}, GeO_{2}, Al_{2}O_{3}, Si_{3}N_{4}, and Ge_{3}N_{4}. Their important polymorphs are considered which are for SiO_{2}: α\alpha-quartz, α\alpha- and β\beta-cristobalite and stishovite, for GeO_{2}: α\alpha-quartz, and rutile, for Al_{2}O_{3}: α\alpha-phase, for Si_{3}N_{4} and Ge_{3}N_{4}: α\alpha- and β\beta-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving \textit{ab initio} pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO_{2}. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si_{3}N_{4} and Ge_{3}N_{4}.Comment: Published version, 10 pages, 8 figure

    Self-Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus

    Get PDF
    The fabrication of 2D systems for electronic devices is not straightforward, with top‐down low‐yield methods often employed leading to irregular nanostructures and lower quality devices. Here, a simple and reproducible method to trigger self‐assembly of arrays of high aspect‐ratio chiral copper heterostructures templated by the structural anisotropy in black phosphorus (BP) nanosheets is presented. Using quantitative atomic resolution aberration‐corrected scanning transmission electron microscopy imaging, in situ heating transmission electron microscopy and electron energy‐loss spectroscopy arrays of heterostructures forming at speeds exceeding 100 nm s−1 and displaying long‐range order over micrometers are observed. The controlled instigation of the self‐assembly of the Cu heterostructures embedded in BP is achieved using conventional electron beam lithography combined with site specific placement of Cu nanoparticles. Density functional theory calculations are used to investigate the atomic structure and suggest a metallic nature of the Cu heterostructures grown in BP. The findings of this new hybrid material with unique dimensionality, chirality, and metallic nature and its triggered self‐assembly open new and exciting opportunities for next generation, self‐assembling devices

    Measuring the hole-state anisotropy in MgB2 by electron energy-loss spectroscopy

    No full text
    We have examined polycrystalline MgB2 by electron energy-loss spectroscopy (EELS) and density of states calculations. In particular, we have studied two different crystal orientations, [110] and [001], with respect to the incident electron beam direction, and found significant changes in the near-edge fine structure of the B K-edge. Density-functional theory suggests that the pre-peak of the B K-edge core loss is composed of a mixture of pxy- and pz-hole states and we will show that these contributions can be distinguished only with an experimental energy resolution better than 0.5 eV. For conventional transmission electron microscope/scanning transmission electron microscope instruments with an energy resolution of ~1.0 eV the pre-peak still contains valuable information about the local charge-carrier concentration that can be probed by core-loss EELS. By considering the scattering momentum transfer for different crystal orientations, it is possible to analytically separate pxy and pz components from the experimental spectra. With careful experiments and analysis, EELS can be a unique tool measuring the superconducting properties of MgB2 , doped with various elements for improved transport properties on a subnanometer scale.Published versio

    Study of the Atomic Structures of Si3N4/CeO2-x and Si3N4/SiO2 Interfaces Using STEM and First-Principles Methods

    Full text link
    Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009</jats:p

    Direct Imaging of Light Elements in Aberration-Corrected Scanning Transmission Electron Microscopy

    Full text link
    Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009</jats:p
    corecore