146 research outputs found

    Effects of postmortem calcium chloride injection on meat palatability traits of strip loin steaks from cattle supplemented with or without zilpaterol hydrochloride

    Get PDF
    An experiment was conducted to determine the effects of zilpaterol hydrochloride mM supplementation (ZH; 8.3 mg/kg on a DM basis for 20 d) and calcium chloride injection [CaCl2, 200 at 5% (wt/wt) at 72 h postmortem] on palatability traits of beef (Bos taurus) strip loin steaks. Select (USDA) strip loins were obtained from control (no ZH = 19) and ZH-supplemented carcasses (n = 20). Right and left sides were selected alternatively to serve as a control (no INJ) or CaCl2-injected (INJ) and stored at 4 degrees C Before injecting the subprimals (72 h postmortem), 2 steaks were cut for proximate, sarcomere length, and myofibrillar fragmentation index (MFI) analyses. At 7 d postmortem each strip loin was portioned into steaks, vacuum packaged, and aged for the appropriate period for Warner-Bratzler shear force (WBSF; 7, 14, 21, and 28 d postmortem), trained sensory analysis (14 and 21 d postmortem), purge loss (7 d), and MFI (3, 7, 14, 21, and 28 d postmortem). Results indicated steaks from both ZH supplementation and INJ had reduced WBSF values as days of postmortem aging increased. The WBSF values of ZH steaks were greater (P 0.05) due to ZH at 14, 21, or 28 d or due to INJ at any aging period. Trained panelists rated tenderness less in ZH steaks than steaks with no ZH at 14 d and 21 d. However, INJ improved (P < 0.05) the tenderness ratings and flavor intensity of the trained panelists, compared with their non-injected cohorts at 21 d. Zilpaterol hydrochloride supplementation reduced (P < 0.05) MFI values, but INJ resulted in greater (P < 0.05) MFI values compared with no INJ. Subprimals from ZH and INJ showed greater purge loss (P < 0.05). Although no interactions were found with ZH and CaCl2, injecting USDA Select strip loins from ZH-fed cattle can help reduce the normal WBSF variation as it does in steaks from non-ZH-fed cattle.90103584359

    Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology

    Get PDF
    Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ54-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts

    Using Mitochondrial and Nuclear Sequence Data for Disentangling Population Structure in Complex Pest Species: A Case Study with Dermanyssus gallinae

    Get PDF
    Among global changes induced by human activities, association of breakdown of geographical barriers and impoverishered biodiversity of agroecosystems may have a strong evolutionary impact on pest species. As a consequence of trade networks' expansion, secondary contacts between incipient species, if hybrid incompatibility is not yet reached, may result in hybrid swarms, even more when empty niches are available as usual in crop fields and farms. By providing important sources of genetic novelty for organisms to adapt in changing environments, hybridization may be strongly involved in the emergence of invasive populations

    Pro-apoptotic Bid is required for the resolution of the effector phase of inflammatory arthritis

    Get PDF
    Rheumatoid arthritis is an autoimmune disease characterized by hyperplasia of the synovial lining and destruction of cartilage and bone. Recent studies have suggested that a lack of apoptosis contributes to the hyperplasia of the synovial lining and to the failure in eliminating autoreactive cells. Mice lacking Fas or Bim, two pro-apoptotic proteins that mediate the extrinsic and intrinsic death cascades, respectively, develop enhanced K/BxN serum transfer-induced arthritis. Since the pro-apoptotic protein Bid functions as an intermediate between the extrinsic and intrinsic apoptotic pathways, we examined the role that it plays in inflammatory arthritis. Mice deficient in Bid (Bid-/-) show a delay in the resolution of K/BxN serum transfer-induced arthritis. Bid-/- mice display increased inflammation, bone destruction, and pannus formation compared to wild-type mice. Furthermore, Bid-/- mice have elevated levels of CXC chemokine and IL-1β in serum, which are associated with more inflammatory cells throughout the arthritic joint. In addition, there are fewer apoptotic cells in the synovium of Bid-/- compared to Wt mice. These data suggest that extrinsic and intrinsic apoptotic pathways cooperate through Bid to limit development of inflammatory arthritis

    Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes

    Get PDF
    BACKGROUND: A substantial body of research supports a genetic involvement in autism. Furthermore, results from various genomic screens implicate a region on chromosome 7q31 as harboring an autism susceptibility variant. We previously narrowed this 34 cM region to a 3 cM critical region (located between D7S496 and D7S2418) using the Collaborative Linkage Study of Autism (CLSA) chromosome 7 linked families. This interval encompasses about 4.5 Mb of genomic DNA and encodes over fifty known and predicted genes. Four candidate genes (NRCAM, LRRN3, KIAA0716, and LAMB1) in this region were chosen for examination based on their proximity to the marker most consistently cosegregating with autism in these families (D7S1817), their tissue expression patterns, and likely biological relevance to autism. METHODS: Thirty-six intronic and exonic single nucleotide polymorphisms (SNPs) and one microsatellite marker within and around these four candidate genes were genotyped in 30 chromosome 7q31 linked families. Multiple SNPs were used to provide as complete coverage as possible since linkage disequilibrium can vary dramatically across even very short distances within a gene. Analyses of these data used the Pedigree Disequilibrium Test for single markers and a multilocus likelihood ratio test. RESULTS: As expected, linkage disequilibrium occurred within each of these genes but we did not observe significant LD across genes. None of the polymorphisms in NRCAM, LRRN3, or KIAA0716 gave p < 0.05 suggesting that none of these genes is associated with autism susceptibility in this subset of chromosome 7-linked families. However, with LAMB1, the allelic association analysis revealed suggestive evidence for a positive association, including one individual SNP (p = 0.02) and three separate two-SNP haplotypes across the gene (p = 0.007, 0.012, and 0.012). CONCLUSIONS: NRCAM, LRRN3, KIAA0716 are unlikely to be involved in autism. There is some evidence that variation in or near the LAMB1 gene may be involved in autism

    Ibrutinib-A double-edge sword in cancer and autoimmune disorders

    Get PDF
    Targeted therapies have appeared as new treatment options for several disease types, including cancer and autoimmune disorders. Of several targets, tyrosine kinases (TKs) are among the most promising. Overexpression of TKs provides a target for novel therapeutic agents, including small molecule inhibitors of tyrosine kinases (TKI). Ibrutinib (PCI-32765) is a TKI of Bruton’s tyrosine kinase (Btk), a key kinase of the B-cell receptor signaling pathway that plays a significant role in the proliferation, differentiation and survival of B cells. In addition to inhibitory effects, recent studies have shown that ibrutinib has multiple immunomodulatory effects. It binds covalently to IL-2 inducible tyrosine kinase (Itk) in T lymphocytes and suppresses the survival of T-helper (Th) 2 cells. This changes the balance of Th1/Th2 cells toward Th1 subset, which are the main immune cells targeting tumor cells. The dual activity of ibrutinib has paid a great attention and several studies are evaluating the anti-tumor and immunomodulatory effects in cancer, autoimmune disorders and infectious diseases. In this article we review the inhibitory and immunomodulatory effects of ibrutinib in B-cell malignancies, autoimmune diseases and infections, as well as the communication between the Ror1 receptor tyrosine kinase and BCR and effects of ibrutinib on this crosstalk.CLL Global Research FoundationManuscrip

    Entrepreneurial orientation and the business performance of SMEs: a quantitative study from the Netherlands

    Get PDF
    Entrepreneurial Orientation (EO) is often mentioned as an antecedent of growth, competitive advantage and superior performance, and prior empirical research has often shown a positive relationship between EO and performance appears to exist. However, an important question that remains unanswered is what effect EO might have on firm performance during periods of economic crisis, and the severe environmental turbulence that accompany such crises. This research is a first investigation towards the effects of EO on the performance of small and medium sized firms during the current global economic crisis. In this study we use the multidimensional model of EO and test a series of hypotheses pertaining to its performance effects using survey data gathered from 164 Dutch SMEs. The present research shows that proactive firm behavior positively contributes to SME performance during the economic crisis. We further show that innovative SMEs do perform better in turbulent environments, but those innovative SMEs should minimize the level of risk and should take action to avoid projects that are too risky

    Bcl-2-regulated cell death signalling in the prevention of autoimmunity

    Get PDF
    Cell death mediated through the intrinsic, Bcl-2-regulated mitochondrial apoptosis signalling pathway is critical for lymphocyte development and the establishment of central and maintenance of peripheral tolerance. Defects in Bcl-2-regulated cell death signalling have been reported to cause or correlate with autoimmunity in mice and men. This review focuses on the role of Bcl-2 family proteins implicated in the development of autoimmune disorders and their potential as targets for therapeutic intervention

    Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    Get PDF
    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment
    corecore