4,484 research outputs found

    Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada

    Get PDF
    Roughly one-third of the Earth's land surface is seasonally covered by snow. In many of these ecosystems, the spring snowpack is melting earlier due to climatic warming and atmospheric dust deposition, which could greatly modify soil water resources during the growing season. Though snowmelt timing is known to influence soil water availability during summer, there is little known about the depth of the effects and how long the effects persist. We therefore manipulated the timing of seasonal snowmelt in a high-elevation mixed-conifer forest in a Mediterranean climate during consecutive wet and dry years. The snow-all-gone (SAG) date was advanced by 6 days in the wet year and 3 days in the dry year using black sand to reduce the snow surface albedo. To maximize variation in snowmelt timing, we also postponed the SAG date by 8 days in the wet year and 16 days in the dry year using white fabric to shade the snowpack from solar radiation. We found that deeper soil water (30-60 cm) did not show a statistically significant response to snowmelt timing. Shallow soil water (0-30 cm), however, responded strongly to snowmelt timing. The drying effect of accelerated snowmelt lasted 2 months in the 0-15 cm depth and at least 4 months in the 15-30 cm depth. Therefore, the legacy of snowmelt timing on soil moisture can persist through dry periods, and continued earlier snowmelt due to climatic warming and windblown dust could reduce near-surface water storage and availability to plants and soil biota. Key Points The hydrological signal of snowmelt timing was strongest in shallow soil Effects of snowmelt timing on soil moisture lasted 2-4 months Advancing snowmelt timing by 2-3 weeks depleted shallow soil water by one third © 2014. American Geophysical Union. All Rights Reserved

    Closely Related Tree Species Differentially Influence the Transfer of Carbon and Nitrogen from Leaf Litter Up the Aquatic Food Web

    Get PDF
    Decomposing leaf litter in streams provides habitat and nutrition for aquatic insects. Despite large differences in the nutritional qualities of litter among different plant species, their effects on aquatic insects are often difficult to detect. We evaluated how leaf litter of two dominant riparian species (Populus fremontii and P. angustifolia) influenced carbon and nitrogen assimilation by aquatic insect communities, quantifying assimilation rates using stable isotope tracers (13C, 15N). We tested the hypothesis that element fluxes from litter of different plant species better define aquatic insect community structure than insect relative abundances, which often fail. We found that (1) functional communities (defined by fluxes of carbon and nitrogen from leaf litter to insects) were different between leaf litter species, whereas more traditional insect communities (defined by relativized taxa abundances) were not different between leaf litter species, (2) insects assimilated N, but not C, at a higher rate from P. angustifolia litter compared to P. fremontii, even though P. angustifolia decomposes more slowly, and (3) the C:N ratio of material assimilated by aquatic insects was lower for P. angustifolia compared to P. fremontii, indicating higher nutritional quality, despite similar initial litter C:N ratios. These findings provide new evidence for the effects of terrestrial plant species on aquatic ecosystems via their direct influence on the transfer of elements up the food web. We demonstrate how isotopically labeled leaf litter can be used to assess the functioning of insect communities, uncovering patterns undetected by traditional approaches and improving our understanding of the association between food web structure and element cycling

    Is the immediate effect of marathon running on novice runners' knee joints sustained within 6 months after the run? A follow-up 3.0 T MRI study.

    Get PDF
    OBJECTIVE: To evaluate changes in the knee joints of asymptomatic first-time marathon runners, using 3.0 T MRI, 6 months after finishing marathon training and run. MATERIALS AND METHODS: Six months after their participation in a baseline study regarding their knee joints, 44 asymptomatic novice marathoners (17 males, 27 females, mean age 46 years old) agreed to participate in a repeat MRI investigation: 37 completed both a standardized 4-month-long training programme and the marathon (marathon runners); and 7 dropped out during training (pre-race dropouts). The participants already underwent bilateral 3.0 T MRIs: 6 months before and 2 weeks after their first marathon, the London Marathon 2017. This study was a follow-up assessment of their knee joints. Each knee structure was assessed using validated scoring/grading systems at all time points. RESULTS: Two weeks after the marathon, 3 pre-marathon bone marrow lesions and 2 cartilage lesions showed decrease in radiological score on MRI, and the improvement was sustained at the 6-month follow-up. New improvements were observed on MRI at follow-up: 5 pre-existing bone marrow lesions and 3 cartilage lesions that remained unchanged immediately after the marathon reduced in their extent 6 months later. No further lesions appeared at follow-up, and the 2-week post-marathon lesions showed signs of reversibility: 10 of 18 bone marrow oedema-like signals and 3 of 21 cartilage lesions decreased on MRI. CONCLUSION: The knees of novice runners achieved sustained improvement, for at least 6 months post-marathon, in the condition of their bone marrow and articular cartilage

    PSK4 COST-EFFECTIVENESS OF TOPICAL CALCIPOTRIOL/BETAMETHASONE DIPROPIONATE TWOCOMPOUND PRODUCT IN A SCOTTISH CARE MODEL

    Get PDF

    PSK4 COST-EFFECTIVENESS OF TOPICAL CALCIPOTRIOL/BETAMETHASONE DIPROPIONATE TWOCOMPOUND PRODUCT IN A SCOTTISH CARE MODEL

    Get PDF
    Aprovada pel gerent de l'Institut Municipal d'Hisenda el 01-07-200

    A quasi-geostrophic analysis of summertime southern African linear-regime westerly waves

    Get PDF
    Linear-regime westerly waves that propagate across the South African domain are often linked to well-known rainfall producing systems such as tropical temperate troughs and synoptic scale tropical low-pressure systems, and ridging South Atlantic Ocean anticyclones at the surface. It is accepted that the baroclinic waves that propagate across the domain provide the lifting mechanism that causes the required vertical motion for rainfall to occur. This study shows that there exists a jet streak embedded in these waves that is located downstream of the trough axis, to the east of which vertically upward motion is expected to occur. The entrance of the jet streak passes just south of the country, as the waves propagate past the domain. The study further shows that for this class of waves, the vertical motion that causes rainfall to occur is induced by the thermally direct transverse ageostrophic circulation that is located at this jet entrance. This is instead of the conventional upper air divergence that is located at the infection point east of the trough axis. Using a method of decomposing the Q-vector into its transverse (Qn) and shear (Qs) components, the divergence felds of which are used to decompose the vertical motion into the corresponding components, i.e 휔n and 휔s, respectively; it was shown that the vertical motion over South Africa is explained more by the former than the latter. Therefore, the uplift over the country and that located at the infection point east of the trough are dynamically distinct processes. Taking the limitations of the quasi-geostrophic framework into consideration, the study concludes that during the passage of linear-regime waves vertical motion that might lead to rainfall is caused by the circulation at the jet entrance and not the divergence in the baroclinic wav

    Informing investment to reduce inequalities: a modelling approach

    Get PDF
    Background: Reducing health inequalities is an important policy objective but there is limited quantitative information about the impact of specific interventions. Objectives: To provide estimates of the impact of a range of interventions on health and health inequalities. Materials and methods: Literature reviews were conducted to identify the best evidence linking interventions to mortality and hospital admissions. We examined interventions across the determinants of health: a ‘living wage’; changes to benefits, taxation and employment; active travel; tobacco taxation; smoking cessation, alcohol brief interventions, and weight management services. A model was developed to estimate mortality and years of life lost (YLL) in intervention and comparison populations over a 20-year time period following interventions delivered only in the first year. We estimated changes in inequalities using the relative index of inequality (RII). Results: Introduction of a ‘living wage’ generated the largest beneficial health impact, with modest reductions in health inequalities. Benefits increases had modest positive impacts on health and health inequalities. Income tax increases had negative impacts on population health but reduced inequalities, while council tax increases worsened both health and health inequalities. Active travel increases had minimally positive effects on population health but widened health inequalities. Increases in employment reduced inequalities only when targeted to the most deprived groups. Tobacco taxation had modestly positive impacts on health but little impact on health inequalities. Alcohol brief interventions had modestly positive impacts on health and health inequalities only when strongly socially targeted, while smoking cessation and weight-reduction programmes had minimal impacts on health and health inequalities even when socially targeted. Conclusions: Interventions have markedly different effects on mortality, hospitalisations and inequalities. The most effective (and likely cost-effective) interventions for reducing inequalities were regulatory and tax options. Interventions focused on individual agency were much less likely to impact on inequalities, even when targeted at the most deprived communities

    Detection of metallic cobalt and chromium liver deposition following failed hip replacement using T2* and R2 magnetic resonance

    Get PDF
    BACKGROUND: Failed hip prostheses can cause elevated circulating cobalt and chromium levels, with rare reports of fatal systemic organ deposition, including cobalt cardiomyopathy. Although blood cobalt and chromium levels are easily measured, organ deposition is difficult to detect without invasive biopsy. The T2* magnetic resonance (MR) method is used to quantify tissue iron deposition, and plays an important role in the management of iron-loading conditions. Cobalt and chromium, like iron, also affect magnetism and are proposed MR contrast agents. CASE PRESENTATION: We describe a case of a 44-year-old male with a failed hip implant and very elevated blood cobalt and chromium levels. Despite normal cardiac MR findings, liver T2* and R2 values were abnormal, triggering tissue biopsy. Liver tissue analysis, including X-ray fluorescence, demonstrated heavy elemental cobalt and chromium deposition in macrophages, and no detectable iron. CONCLUSIONS: Our case demonstrates T2* and R2 quantification of liver metal deposition in a patient with a failed hip implant. Further work is needed to investigate the role of T2* and R2 MR in the detection of metal deposition from metal on metal hip prostheses
    • …
    corecore