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Abstract

Reduced precision number formats have become increasingly popular in various fields of computational science, as they
offer the potential to enhance energy efficiency, reduce silicon usage, and improve processing speed. However, this is
often at the expense of introducing arithmetic errors that can impact the accuracy of a system. The optimal balance
must be struck, judiciously choosing a number format using as few bits as possible, while minimising accuracy loss.

In this study, we examine one such format, posit arithmetic as a replacement for floating-point when conducting
spiking neuron simulations, specifically using the Izhikevich neuron model. This model is capable of simulating complex
neural firing behaviours, 20 of which were originally identified by Izhikevich and are used in this study. We compare the
accuracy, spike count, and spike timing of the two arithmetic systems at different bit-depths against a 64-bit floating-
point gold-standard. Additionally, we test a rescaled set of Izhikevich equations to mitigate against arithmetic errors by
taking advantage of posit arithmetic’s tapered accuracy.

Our findings indicate that there is no difference in performance between 32-bit posit, 32-bit floating-point, and our
reference standard for 95% of the tested firing types. However, at 16-bit, both arithmetic systems diverge from the 64-bit
reference, albeit non-uniformly. For instance, the posit implementation demonstrates an accumulated spike timing error
of 0.5ms over a 1000ms simulation compared to 9ms for floating-point – an 18x improvement using posit arithmetic for
regular (tonic) spiking. This finding holds particular importance given the prevalence of this particular firing type in
specific regions of the brain. Furthermore, when we rescale the neuron equations, this error is eliminated altogether.
Hence, our results demonstrate that posit arithmetic is not only a viable replacement for 64-bit floating-point in these
simulations, it can do so while using 4× fewer bits. As a Posit Arithmetic Unit has similar area to a Floating Point
Unit with the same bit width, this constitutes a significant saving of hardware resources while maintaining full accuracy
compared to 64-bit floating-point.
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1. Introduction

Spiking Neural Networks (SNNs) are often considered
the next generation of Artificial Neural Network (ANNs)
[40]. They are a closer approximation of biological neural
networks than current state-of-the-art ANNs such as con-
volutional neural networks and operate by simulating the
behavior of individual neurons, specifically by modelling
their membrane voltages. Unlike ANNs, where neurons
are usually continuously active, SNNs exhibit sparse ac-
tivity in time with neurons only generating brief output
‘spikes’ when they receives sufficient input. These spikes
serve as the means of communication between neurons and
facilitate the transfer of information within the SNN. Each
spike is considered identical and information is encoded
only in the time at which they occur [2]. This sparsity
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means that SNNs share many of the benefits of their bi-
ological counterparts such as low power and noise robust-
ness, and are an active area of research [13] [11]. While not
yet mainstream, SNNs have found success in a variety of
applications such as object recognition [6], robotic control
[5] and even ChatGPT-like large language models [48].

Typically, SNNs use first-order differential equations to
describe models of neurons and synapses. Multiple sets of
equations are available, varying in their level of complexity
and biological correctness. The simplest are the Integrate-
and-Fire (IF) family, which are not biologically plausible,
but able to mimic network dynamics [46]. The most com-
plex are the Hodgkin-Huxley (HH) model, which are a
biophysically accurate neuron model [22]. In the present
study, we use the Izhikevich model, which is less complex
than the HH, but still able to replicate many neuron firing
behaviours and is far more realistic than the IF models
[25]. Once a neuron model is chosen for the SNN, a nu-
merical simulation proceeds by tracking the evolution of
each neuron’s membrane voltage through time. With the
Izhikevich model, each neuron has a threshold, which if
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it is crossed, constitutes spike emission, followed by some
reset conditions [27].

However, the combination of these complex dynam-
ics and spike-based commmunication leads to challenges
running SNN simulations efficiently on a CPU or GPU
[31]. Some Application-Specific Integrated Circuit (ASIC)
hardware is available such as the SpiNNaker and Loihi
neuromorphic systems, but these are research orientated
and not widely available [8], [12]. Field Programmable
Gate Arrays (FPGA) [47] are another option, but their
capacity is limited compared to ASIC, which restricts net-
work size (although they can be linked into multi-board
systems, such as Moore et al. [37]). Hence, considerable
research has focused on reducing the hardware cost of
these networks, while maintaining accuracy in the spike
timing and underlying neuron equations. For this pur-
pose, several approaches have been proposed for imple-
menting complex functions, such as CORDIC [21],[18],
Look-up tables [4] and piecewise-linear-approximation [3].
More recently, there is growing research interest in re-
duced precision number formats as a system optimisation
technique [30, 36]. The potential benefits to doing so are
twofold. Firstly, reducing hardware complexity can free up
resources that can be redeployed to increase model com-
plexity. Secondly, reduced bit-depth increases the speed
of computation, which in turn, can reduce energy require-
ments and allow long running dynamics to be simulated.

Posit numbers represent one exciting form of reduced
precision number format that promise the accuracy of
Floating-Point (FP) while using fewer bits. Additionally,
they may be simpler to implement in hardware, requiring
less silicon and enabling faster, smaller arithmetic units
within processors [15], [7]. But, to the best of our knowl-
edge, only one study has been conducted into the potential
use of posit arithmetic for SNN implementations. Silva
et al. [43] demonstrated that a single, posit-based Izhike-
vich neuron was able to replicate the dynamics of 20 differ-
ent firing types that were originally identified by Izhikevich
in his earlier work [27]. However, there are no published
studies that explore the impact of reduced precision, posit
arithmetic on SNN accuracy and, here we seek to do just
this.

We compare the accuracy of equivalently sized posit
arithmetic with single precision (32-bit) and half preci-
sion (16-bit) FP arithmetic when simulating an Izhikevich
neuron while also investigating whether rescaling of the
standard Izhikevich equations, to make better use of posit
arithmetic’s tapered accuracy, is a successful strategy to
minimise accuracy loss. The results show that it is pos-
sible to simulate tonic firing with 16-bit posit arithmetic
while incurring no loss of accuracy, compared to a 64-bit
floating-point version. This is an important result given
the common usage of this firing type [44], possibly due to
its abundance in certain brain areas (90-95% of rat basal
ganglia are cells of this type [39, 42]).

Additionally, Chaurasiya et al. [7] showed that hard-
ware usage for a given bit-depth, of a dedicated floating-

point unit and posit arithmetic unit are comparable in
terms of energy and area. However, they argue that the
additional accuracy of posit arithmetic allows for smaller
posit arithmetic units to be used without sacrificing accu-
racy. Therefore, our finding of no accuracy loss for 16-bit
arithmetic will reduce the overall size of a system, com-
pared to a 64-bit implementation. This saving is likely to
be significant. Chaurasiya et al. [7] compared the FPGA
utilisation of IEEE-754 compliant adders and multipliers
for 32-bit and 16-bit to their posit equivalents. They found
that 32-bit floating-point adder used 1049 LUTs, while a
16-bit posit adder only required 391. Similarly, a 32-bit
floating-point multiplier required 533 LUTs and 4 DSP
slices, whereas the 16-bit posit only needed 218 LUTs and
1 DSP slice. They did not investigate 64-bit arithmetic
units. Direct hardware usage comparisons have been re-
ported [10] however, such studies often subset the IEEE-
754 standard to reduce the size of the floating-point unit.
For example, only implementing a single rounding mode,
or not supporting subnormal numbers. Indeed, this ap-
proach of sub-setting the full IEEE-754 standard, to re-
duce the hardware overheads, is gaining some interest in
the research community [38, 32, 41].

The rest of this paper is organised as follows. Section
1.2 discusses the two arithmetics and gives an example,
illustrating their differences. This includes a short intro-
duction to decimal accuracy, which is a measure of arith-
metic precision for a given value. Section 2 outlines the
methods used – including all formulas and parameter val-
ues for both standard and rescaled equation types – as
well as identifying the software emulators and numerical
methods used. Section 3 covers the main results of this
study as well as a discussion of possible explanations for
the differences found. Then, we briefly explain some of the
issues with using reduced-precision fixed-point arithmetic
to simulate Izhikevich neurons in Section 3.4. Finally, Sec-
tion 4 proposes the main conclusions and suggests future
research directions.

1.1. Contributions to Science

• We not only show that posit arithmetic is capable
of matching floating-point at reduced precision, but
we quantify the arithmetic errors for both number
systems for all 20 firing patterns of the Izhikevich
neuron model. Moreover, we show when posits out-
perform floating-point numbers.

• We demonstrate that rescaling the standard Izhike-
vich equations is a powerful technique for mitigating
against arithmetic errors when using reduced preci-
sion floating-point and posit number formats.

• Finally, we show that regular spiking (Tonic Spiking)
can be simulated using 16-bit posit arithmetic with
no loss of accuracy compared to 64-bit floating point
- a potential 75% saving in hardware resources.
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1.2. Background

Currently, the predominant format for representing
real numbers within a computer is Floating-Point (FP),
which is ratified in the IEEE-754 standard [1]. As shown
in Figure 1, floating point numbers represent numbers us-
ing sign, exponent and fraction bits. This arrangement has
a large dynamic range and it is the most widely used num-
ber format in scientific computing. However, it has sev-
eral well-known drawbacks [4]. For instance, floating-point
arithmetic is neither associative nor commutative mak-
ing it inconsistent with fundamental mathematical laws.
Additionally, it has two representations of zero, permits
subnormal numbers, has multiple rounding modes and re-
serves a great many bit patterns for Not-a-Number (NaN).
These increase the format’s hardware cost, due to the need
to verify all these special conditions during run time.

Posit arithmetic is designed to be a hardware friendly,
drop-in replacement for FP although, as it was only intro-
duced in 2017, it is still in its infancy [15]. As shown in
Figure 1, posits have sign and fraction bits like FP. How-
ever, unlike FP, the fraction is scaled by two values – the
exponent and the regime – rather than just the exponent
as in FP. The regime bits are unique to posits, and act like
a super-exponent, scaling the exponent and thus the frac-
tion. From a hardware perspective, the main drawback
of posit arithmetic is the dynamic size of the regime bits,
which alter the location of the exponent and fraction bits.
Thus, posit decoding entails extra overhead encoding and
decoding values compared to FP, required to determine the
boundaries of each of these sections, before any further op-
erations can be performed. However, even with this over-
head, hardware implementations of posit arithmetic units
should still be more efficient than IEEE-754 compliant FP
units of the same bit depth due to the intricacies of the
IEEE-754 standard. For example, the posit standard re-
quires only a single rounding mode compared to five for
FP. Indeed, given these implementation complexities and
the fact that a 64-bit, IEEE-754 compliant FP arithmetic
unit (FPU) entail can occupy up to 60-70% of the area
of a CPU, hardware designers are moving away from full
standard compliant FPU designs as part of a move toward
approximate computing [7].

Figure 1: A comparison of 32-bit floating-point (top) and 32-bit
posit (bottom) number structures. 32-bit floating-point structure as
defined in the IEEE-754 standard. 1 sign bit, 8 exponent bits and 23
fraction bits. A 16-bit posit (posit16) is defined as 1 sign bit, at least
2 regime bits, 2 exponent bits and the remaining bits represent the
fraction. The dashed lines on (b) represent dynamically positioned
bits.

A posit format is declared with two numbers
posit⟨n, es⟩ where n is the total number of bits and es,
the maximum number of those bits used for the exponent.
The first bit of a posit is always a sign bit, which is im-
mediately followed by the regime bits. The regime bits
encode the value r in a run of zeros, or ones, terminated
by the opposite bit. A run of ones encodes a positive num-
ber, and a run of zeros a negative number, as defined by
Equation 2 [14]. Where k is the number of ones or ze-
ros before the terminating bit. The regime bits are not
present in the floating-point standard and are of variable
length. In the extreme case, they can expand to fill the
whole word, leaving no space for the exponent or any part
of the fraction. Following the regime bits are the exponent
bits. Unlike floating-point, the exponent bits do not have
a bias. Lastly, we have the fraction bits. These contain
an implicit one and function in the same way as in float-
ing point. A number p is decoded using Equation 1. The
value useed is calculated by useed = 22

es

(see [15] for more
explanation).

p = (−1)suseedr2e
(
1 +

f

2fs

)
(1)

r =

{
−k ifR0 = 0

(k − 1) ifR0 = 1
(2)

Importantly, posits do not underflow or overflow. In-
stead, they exhibit tapered precision, centered around 0
and greatest in the interval (-1, 1). This has implications
for their accuracy. For example, trying to represent Euler’s
number e = 2.7182818284590452354 with 16-bit Floating-
Point (FP16) and 16-bit posit (posit16) results in the bit
patterns shown in Figure 2. The benefit of dynamically po-
sitioned bits means that, in a particular range, the posit’s
regime bits are at their shortest (2 bits minimum), when
combined with fewer exponent bits, leaves more bits to
represent the fraction. These additional fraction bits can
be seen to improve the accuracy of the representation.
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Figure 2: 16-bit example of Euler’s number represented in FP16 and Posit16 arithmetic. The additional 2 fractional bits have been highlighted
in green.

Decoding Figure 2 into actual values gives us a posit16
value of 2.71826171875 (Equation 4).

p = (−1)0 × 40 × 21 ×
(
1 +

1471

212

)
(3)

= 2.71826171875 (4)

If we compare this result with the FP16 version of e,
which has 2 fewer fraction bits, we can see the effect on the
accuracy of its representation. FP16 achieves e = 2.71875.

fp = (−1)s × 2e−bias ×
(
1 +

fraction

210

)
(5)

fp = (−1)0 × 216−15 ×
(
1 +

368

210

)
(6)

= 2.71875 (7)

One method to quantify this difference is to use deci-
mal accuracy (Equation 8), which quantifies the number of
correct decimal places following rounding [15, 30]. Using
this on the Euler’s number example gives a decimal preci-
sion of 5.49 for posit16 and 4.13 for FP16, illustrating the
advantage of posit’s tapered accuracy.

decimal accuracy = − log10

∣∣∣∣log10 ( xrepr

xexact

)∣∣∣∣ (8)

In addition to tapered accuracy, the posit numbering
scheme has several advantages over FP. Firstly, only two
exception values exist, zero and NaR (Not-a-Real, equiv-
alent to Not-a-Number and representative of ±∞). This
not only reduces costly condition checking but addition-
ally, it liberates bit patterns to represent values, which in
turn, gives posit arithmetic a higher precision for a given
number of bits compared to FP. Secondly, posits use a
single rounding scheme. Hence, posit circuitry should be
more compact than a current dedicated FP engine and at
least as accurate. However, it is unclear what effect these
differences will have on SNN simulations.

2. Methods

We used single-precision (FP32) and half-precision
(FP16) floating-point numbers, along with the posit⟨32, 2⟩
(posit32) and posit⟨16, 1⟩ (posit16) formats formally de-
fined by the Posit Working Group [14] to run simulations
of an Izhikevich neuron over 1000ms using both standard
equations and rescaled equations. Following the approach
employed by several previous studies [9, 30], we used a soft-
ware implementation to study the errors in numeric simu-
lations of reduced precision FP and posit arithmetic. Al-
though emulation does not give a measure of speed, it does
inform us about accuracy of the arithmetic. To compare
the membrane voltage of our simulations against a 64-bit
floating point baseline, we measure the Normalised Root-
Mean-Square Error (NRMSE) of each test. Spike counts
and their accumulated timing error were also recorded.

2.1. Model Definitions

2.1.1. Standard Neuron Model

In 2003, Izhikevich presented a neuron model capa-
ble of complex spiking patterns, similar to those found in
nature (e.g. intrinsic bursting, chattering, low-threshold
spiking, fast spiking) but with a reduced computational
load in comparison to other models [27]. It consists of a
pair of non-linear differential equations: Equation 9 mod-
els to evolution of the membrane voltage and equation 10
models a recovery variable.

v′ = 0.04v2 + 5v + 140− u+ I (9)

u′ = a(bv − u) (10)

Once the membrane voltage crosses a ‘threshold voltage’,
typically 30mV for the Izhikevich model, a spike is emitted
and predefined reset conditions are applied:

v ← c (11)

u← u+ d (12)
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The behaviour of the model is controlled by four dimen-
sionless variables a, b, c, d which correspond to different
model properties [25] and are typically set to the values
listed in Table 1 in order to reproduce one of the 20 iden-
tified behaviours (See [27]). Three firing patterns (Class
1, Integrator and Accommodation) also require altering
Equations 9 and 10, see the authors website for full imple-
mentation details [26]. Given its phenomenological fidelity
with nature, coupled with its computational efficiency the
Izhikevich model is widely used in many SNN implementa-
tions and has been used to compare arithmetics in previous
studies [23, 24]. Hence, it was also selected as the neuron
type in this study.

2.1.2. Rescaled Neuron Model

In addition to the standard Izhikevich model, we de-
veloped a rescaled version so that the standard operating
range of the state variables would fit within the region
where posits are most accurate. This transforms Equation
9 into Equation 13. Equations 11 and 12 which describe
the reset behaviour are unchanged but the c and d pa-
rameters as well as the input current, spike threshold and
initial value of u and v are all rescaled by a factor of 0.01.

v′ = 4v2 + 5v + 1.4− u+ I (13)

2.2. Testing Procedure

We compared FP32, FP16, posit32 and posit16 against
a 64-bit floating-point (FP64) ground-truth for all 20 fir-
ing types outlined above, using both standard and rescaled
equations. Although several posit hardware implementa-
tions have been proposed [35, 28], the hardware is not yet
widely available. However, several open-source software
simulation libraries are available with the SoftPosit library
being the most prominent. Here, we use this library to test
the accuracy of posit arithmetic and compare it against
other varieties [10, 34] and the Berkeley SoftFloat library
[16] to simulate FP32 and FP16 formats. We ran our simu-
lations in Python 3.8, on a 64-bit machine using wrappers
for SoftPosit and SoftFloat (developed by Leong [33] and
Leong [34] respectively) and used the native floating-point
type for the reference FP64 simulations. Simulations were
run for 1000ms using the Forward Euler method of nu-
merical integration with time step sizes laid out in Table
1.

2.3. Data Analysis

For each test, we recorded the voltage (mV) every time
step and, if the spike threshold was crossed, the time step
at which this occurred (ms). These recorded values were
used to calculate: the membrane voltage error, spike count
error, and where the spike count was the same, the accu-
mulated spike timing error.

2.3.1. Membrane Voltage Error

In line with similar studies [19, 17], membrane volt-
age error was quantified using the Normalised Root Mean
Square Error (NRMSE):

RMSE =

√
Σn

t=1(vaut(t)− vfp64(t))2

n
(14)

NRMSE =
RMSE

(vmax − vmin)
(15)

Where vaut is the membrane voltage of the arithmetic
under test, and vfp64 is the membrane voltage simulated
using 64-bit floating-point arithmetic at time t. NRMSE
quantifies the error between the FP64 voltage reference
and the arithmetic under test at each time step during the
each simulation. Normalising the error allows errors to
be directly compared between standardised and rescaled
equation types.

2.3.2. Spike Count and Timing

In order to assess the effect of arithmetic error on
spike count and their timing, we also counted the number
of spikes and their absolute accumulated lag/lead times.
First, we determined whether each test produced the ex-
pected number of spikes (nspike). If it did, we then looked
at the timing of each spike (Saut

i ), relative to the reference

FP64 simulation (Sfp64
i ):

T =

nspike∑
i

|Sfp64
i − Saut

i | (16)

Where T is the sum of absolute timing difference per
spike, across the whole simulation. This method differs
slightly from Hopkins et al. [24], in that the final reported
result is the accumulated lead/lag, as opposed to the dif-
ference for each spike. The main reason for this is brevity
as we tested all 20 Izhikevich neuron behaviours whereas
Hopkins et al. [24] only tested a few firing types. Moreover,
accumulating the timing errors will still allow a compari-
son between experiments.

3. Results and Discussion

3.1. Membrane Voltage Error

First, we present the NRMSE results for the differ-
ent arithmetics, bit depths and equation types in Table 3;
Figure 3 and Figure 4 show the 32-bit and 16-bit results
respectively. Aside from the ‘Class 2’ Izhikevich neurons –
which were equally problematic at all precisions and equa-
tion types – the NRMSE was far lower for 32-bit arithmetic
compared to 16-bit.

Considering the standard Izhikevich equations, Posit32
had a lower NRMSE in every case with the exception of
‘Class 2’. Since the ‘Class 2’ error was much greater than
the other errors and it was lower for FP32 it skewed the
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Firing Type a b c d dt initial u initial v

Tonic Spiking 0.02 0.2 -65.0 6.0 0.25 b× v -70
Phasic Spiking 0.02 0.25 -65.0 6.0 0.25 b× v -64
Tonic Bursting 0.02 0.2 -50.0 2.0 0.25 b× v -70
Phasic Bursting 0.02 0.25 -55.0 0.05 0.2 b× v -64
Mixed Mode 0.02 0.2 -55.0 4.0 0.25 b× v -70

SFA 0.01 0.2 -65.0 8.0 0.25 b× v -70
Class 1 0.02 -0.1 -55.0 6.0 0.25 b× v -60
Class 2 0.2 0.26 -65.0 0.0 0.25 b× v -64

Spike Latency 0.02 0.2 -65.0 6.0 0.2 b× v -70
Subthreshold Oscillation 0.05 0.26 -60.0 0.0 0.25 b× v -62

Resonator 0.1 0.26 -60.0 -1.0 0.25 b× v -62
Integrator 0.02 -0.1 -55.0 6.0 0.25 b× v -60

Rebound Spike 0.03 0.25 -60.0 4.0 0.2 b× v -64
Rebound Burst 0.03 0.25 -52.0 0.0 0.2 b× v -64

Threshold Variability 0.03 0.25 -60.0 4.0 0.25 b× v -64
Bistability 0.1 0.26 -60.0 0.0 0.25 b× v -61

DAP 1.0 0.2 -60.0 -21.0 0.1 b× v -70
Accomodation 0.02 1.0 -55.0 4.0 0.5 -16 -65

Inhibition Induced Spiking -0.02 -1.0 -60.0 8.0 0.5 b× v -63.8
Inhibition Induced Bursting -0.02 -1.0 -45.0 0.0 0.5 b× v -63.8

Table 1: Izhikevich parameters and initial conditions to produce 20 different firing types. Additionally, for firing types Class 1 and Integrator,
Equation 9 becomes v′ = 0.04v2 + 4.1v + 108− u+ I and for Accommodation, Equation 10 becomes u′ = a(b(v + 65)) [27].

overall mean which was 0.0115 for FP32 and 0.0119 for
posit32. Indeed, with ‘Class 2’ removed from the calcu-
lation, the overall mean for FP32 was 2.58 × 10−5 and
3.97×10−6 for posit32, which is an error reduction of over
6x. A broadly similar pattern was noted for the rescaled
equations. Posit32 had a lower NRMSE in 18 of the 20
firing types. ‘Bistability’ and ‘Class 2’, both had lower
errors in FP32. ‘Bistability’ did not demonstrate the ex-
pected cessation of firing on its second input spike. This
behaviour is very sensitive to timing, and posit32 was not
able to demonstrate it. However, with these outlier re-
moved the overall mean NRMSE for FP32 was 2.32×10−5

and 1.72× 10−6 for posit32, which is an error reduction of
13.5× in the firing types with expected dynamics.

The standard Izhikevich equations for all firing types
need to represent a minimum value of -81.8 and a maxi-
mum of 30. Since FP32 is a fixed format, it always uses
23 fractional bits to express these values whereas posit32
will use 27 fractional bits for values around 30, and 23
fractional bits to represent -81.8. Hence, when using the
standard equations, posit32 has at least the same number
of fractional bits as FP32 resulting in additional precision
across most of the numerical range encountered in these
simulations. Table 2 gives a summary of the number of
fractional bits, available for each arithmetic at these val-
ues and their decimal accuracy.

Next we consider 16-bit arithmetic. Figure 4 clearly
shows that some firing types such as ‘Class 1’ (which has
an NRMSE close to 0.2 for all arithmetics) accrue more
error than others such as ‘Spike Latency’, ‘Subthreshold’
and ‘Resonator’ whose NRMSE is below 0.05. This pat-
tern broadly correlates with the number of spikes emitted

in a simulation, shown by the dotted black line in Figure
4. However, there were exceptions to this. Most notably,
the error was far greater for FP16 with ‘Rebound Burst’
(standard equations). This was due to the neuron continu-
ing to fire regularly following the expected burst of spikes.
This is in contrast to the posit16 test which failed to fire
the expected burst at all.

Using the standard equations, posit16 had a lower
NRMSE in 11 of the 20 firing types. This is reflected in
the mean error which is slightly lower for posit16 (0.0724)
than FP16 (0.0782). Unlike the 32-bit tests, there were no
experiments where one arithmetic or firing type was orders
of magnitude different from the rest, requiring additional
consideration. Rescaling improved the error for FP16 in
only 6 firing types and the mean error increased slightly.
This in contrast to the posit16 results, which showed an
improvement in 13 firing types compared to the standard
equations, with a reduction in the mean error. This clearly
demonstrates the use of rescaling to improve simulation
accuracy when using reduced precision posit arithmetic.

One possible explanation for this is the increase in the
number of available fractional bits following rescaling. For
example, posit16 had 10 fractional bits to represent the
value 30, the same as FP16. However, when we use the
rescaled equations, the value 30 becomes 0.3 where posit16
uses 12 fractional bits. Again, it is likely that it is these
additional fractional bits that give posit16 the advantage
over FP16. A similar situation can be seen for the lower
bound number -81.8. At this value, posit16 has only 9
fractional bits compared to 10 used in FP16. However, in
the rescaled equations, -81.8 becomes -0.818 and posit16
provides 12 fractional bits compared to FP16’s 10.
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Figure 3: 32-bit floating-point and posit arithmetics using both the Standard Equations (SE) and Rescaled Equations (RE). Where Inhib.
Ind. Spiking is Inhibition Induced Spiking and Inhib. Ind. Bursting is Inhibition Induced Bursting. NRMSE is displayed on a log scale to
account for the magnitude of the ‘Class 2’ error.

Number of Bits for Fraction Decimal Accuracy Number of Bits for Fraction Decimal Accuracy
Equation Type Value FP32 Posit32 FP32 Posit32 FP16 Posit16 FP16 Posit16

30 23 26 Exact Exact 10 10 Exact Exact
Standard 0 23 0 (exception) Exact Exact 10 0 (exception) Exact Exact

-81.8 23 26 7.79 8.99 10 9 4.18 3.58

0.3 23 27 7.76 8.97 10 12 4.15 4.75
Rescaled 0 23 0 (exception) Exact Exact 10 0 (exception) Exact Exact

-0.818 23 27 8.01 10.80 10 12 4.16 5.44

Table 2: A table showing the number of bits used to represent the fraction for each arithmetic type and equation. The values were chosen as
the minimum and maximum values seen across all firing types. Decimal accuracy shows the correct number of decimal places after rounding
for each value.

As well as NRMSE, we can also calculate decimal pre-
cision for each arithmetic and equation type. Using the
standard equations the threshold value is 30, which is ex-
actly representable in all arithmetics and bit depths. How-
ever, in the rescaled equations, the threshold becomes 0.3
where FP32 has 23 fractional bits and a decimal precision
of 7.76 digits whereas posit32 has 26 fractional bits and a
decimal precision of 8.97, resulting in more than one cor-
rect additional decimal place. Using reduced 16-bit arith-
metic, FP16 has 10 bits for the fraction and achieves a
decimal precision of 4.15 whereas posit16 has 12 fractional
bits and a decimal accuracy of 4.75. Tamura et al. [45]
demonstrated that small changes can have a large impact
on the Izhikevich model. Their bifurcation analysis of the

Izhikevich system showed that, a change in the parameter
b by as little as 0.07 can change a stable system into a
chaotic one.

Table 2 compares the number of bits available for each
test to represent the fraction for three values. These values
were the minimum and maximum seen over all 20 tests for
each equation type, plus zero. It shows that when using
32-bits, posit arithmetic has 3 more bits to represent each
fraction. Therefore, giving it a higher accuracy. However,
when using 16-bits, FP16 and posit16 both have 10 bits to
represent the value 30 but posit16 has only 9 bits to rep-
resent -81.6, compared to 10 bits for FP16. This could ac-
count for why fewer posit tests could reproduce the correct
number of spikes in 16-bit tests using the standard equa-
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tions. However, overall the NRMSE was very similar to
FP. In contrast, when comparing the fraction bits available
for the rescaled values, we can see that posit32 has 4 more
bits of precision than FP32 and posit16 has 2 more bits
than FP16. Thus posit arithmetic always has a higher ac-
curacy when using the rescaled equations. Indeed, rescal-
ing the equations reduced the NRMSE of posit16-based
simulations in 13 out of the 20 firing types – dramatically
in some cases. This is in contrast to the FP16 results,
where only 5 firing types had an improved NRMSE un-
der the rescaled equations – a likely consequence of almost
constant decimal accuracy. ‘Tonic Spiking’ in particular
appears to benefit from using the rescaled equations with
posit16 arithmetic.

To illustrate this disparity, Figure 7 shows the FP16
simulation of ‘Tonic spiking’ using standard equations. If
we compare this to the posit16 simulation shown in Figure
10, then the advantages of this arithmetic become appar-
ent. If we again focus on the final 50ms, while there is a
slight error, it is much reduced compared to the error at
the same point when using floating-point arithmetic (Fig-
ure 9).

Finally, as shown in Figure 11, this error reduces to
effectively zero for the posit16 simulation when we use the
rescaled equations – with only an small difference in volt-
age amplitude separating the two simulations. However,
as shown in Figure 11a, rescaling does not reduce the FP16
error.

3.2. Class 2

Figure 12 shows the ‘Class 2’ firing type using FP32
and standard equations. Izhikevich defines ‘Class 2’ as
neuron types which are either quiescent or have a rela-
tively large firing rate [27]. Although Class 2 has the great-
est NRMSE, it demonstrates normal firing, and the high
NRMSE are likely to be related to the high spike count,
each of which lags or leads the FP64 reference. However,
if we consider the spike count, Class 2 is very similar to
the FP64 reference.

3.3. Spike Count and Timing

In Table 4 we show the spike count and, if we first
consider 32-bit arithmetic, we can see that when using
standard equations, posit32 deviated in spike count from
the reference only once for the ‘Class 2’ firing type. FP32
did not have this error and fired the correct number of
times. While this change in spike number should be a
cause for concern and we will discuss it in the next section,
we should also consider spike timing. In table 5 we show
the accumulated spike timing errors and, when using 32-bit
arithmetic, this shows there were no spike timing errors for
any firing type, again with the exception of Class 2. Simi-
larly to other results, the situation was different when 16-
bit arithmetic was used. When using standard equations,
posit16 deviated from the reference nine times whereas,
FP16 deviated only four times. This often meant that the

expected dynamics were not achieved in that test. For ex-
ample, ‘Rebound Burst’ should fire 11 spikes following a
brief inhibitory input. FP16 fired a burst, but then contin-
ued firing afterwards meaning that 114 spikes were emitted
over the 1000ms. This is in contrast to posit16 which did
not fire at all. Hence, in this case, both arithmetics failed
to produce the expected burst of spikes. When the equa-
tions were rescaled, posit16 improved, deviating from the
FP64 only seven times whereas FP16 got worse – deviated
8 times from FP64. Furthermore, with rescaled equations,
posit16 was the only 16-bit arithmetic capable of reproduc-
ing the expected dynamics of the ‘Threshold Variability’
firing type. Table 5 shows the mean accumulated timing
error. When using 16-bit arithmetic, posit16 had a simi-
lar mean value to FP16 across the reproduced firing types
when using the standard equations, but a much lower mean
error when using the rescaled equations.

3.4. Fixed-Point Arithmetic

While floating-point and posit arithmetic have been
investigated in this paper, fixed-point is another potential
arithmetic option. Fixed-point arithmetic is much simpler
and faster than either posit or floating-point and easier to
implement. However, if care is not taken it is highly sen-
sitive to potentially catastrophic underflow and overflow
errors. Although both Hopkins et al. [24] and Jin et al.
[29] were able to achieve a 16-bit fixed-point representa-
tion of an Izhikevich neuron, this was only managed after
employing multiple error reducing strategies which make
their implementation incompatible with this work.

Hopkins et al. [24] used higher order ODE solvers
namely, RK2, RK3 and Chan-Tsai. While these are more
accurate, they entail a higher latency and computational
overhead than the much simpler Forward Euler used here.
Moreover, they chose only a subset of neuron firing types
and a smaller time step. Using smaller time-steps gen-
erally improves the stability and accuracy of a solution
when using numerical methods of integration. Indeed, the
accuracy typically increases monotonically as step size re-
duces, but this not only increase the conputational load it
can also interfere with the required neuron behaviour. For
example, some firing types are very sensitive to input spike
timing such as bistability; If there is too much lag/lead er-
ror, bistability doesn’t stop firing on the second input, as
it should. This behavioural dependence on the timestep
size has been previously described in Heidarpur et al. [20]
and Skocik and Long [44] and also explains why Hopkins
et al. [24] and Jin et al. [29] only investigated a subset
of firing types. Hopkins et al. [24] also used mixed preci-
sion throughout, opting for 32-bit fixed-point numbers for
all constants and pre-computed several of these to control
any rounding error. They admit that even after using all
these strategies, using round-to-nearest rounding scheme,
did not produce any spiking behaviour at all. Indeed, to
reduce their errors to an acceptable level they had to em-
ploy stochastic-rounding. Which, although relatively sim-
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Standard - NRMSE Rescaled - NRMSE
Firing Type 32-bit 16-bit 32-bit rescaled 16-bit rescaled

Float Posit Float Posit Float Posit Float Posit
Tonic Spiking 3.01E-06 2.73E-07 1.62E-01 1.04E-01 1.55E-06 1.34E-07 1.64E-01 7.46E-03
Phasic Spiking 1.84E-05 2.51E-07 4.05E-02 3.20E-02 6.00E-06 5.76E-07 3.36E-02 3.50E-02
Tonic Bursting 9.69E-07 2.13E-07 1.32E-02 8.05E-02 4.93E-07 4.82E-08 1.59E-01 3.42E-03
Phasic Bursting 6.74E-06 7.80E-07 5.68E-02 5.24E-02 5.04E-06 4.53E-07 9.42E-02 9.20E-02
Mixed Mode 2.43E-06 4.91E-07 9.16E-02 7.46E-02 1.58E-06 1.76E-07 1.22E-01 1.25E-01
SFA 1.87E-06 1.95E-07 1.46E-01 1.47E-01 2.21E-06 5.01E-08 7.96E-02 1.65E-01
Class 1 1.79E-04 1.11E-05 2.03E-01 1.86E-01 3.03E-04 7.22E-06 2.03E-01 1.81E-01
Class 2 2.30E-01 2.39E-01 2.79E-01 2.47E-01 2.69E-01 2.79E-01 2.53E-01 2.88E-01
Spike Latency 1.62E-06 1.55E-07 2.03E-02 1.54E-02 2.77E-06 1.33E-07 2.31E-02 1.11E-02
Subthreshold

Oscillation
3.49E-06 4.08E-07 2.29E-02 4.26E-02 3.21E-06 1.97E-07 2.79E-02 1.97E-02

Resonator 1.47E-05 3.25E-07 3.33E-02 4.50E-02 1.93E-06 7.37E-07 4.18E-02 2.06E-02
Integrator 3.36E-07 1.20E-07 2.27E-02 1.88E-02 2.42E-06 3.32E-08 2.42E-02 1.45E-02
Rebound Spike 4.22E-06 1.25E-06 2.96E-02 2.30E-02 1.79E-05 2.13E-06 4.80E-02 2.14E-02
Rebound Burst 2.58E-05 5.59E-06 1.82E-01 5.82E-02 1.98E-05 2.80E-06 6.46E-02 5.83E-02
Threshold

Variability
3.26E-06 4.69E-07 2.51E-02 4.24E-02 9.53E-07 1.42E-07 4.62E-02 2.85E-02

Bistability 7.96E-06 4.68E-06 1.13E-01 5.18E-02 1.20E-05 1.12E-01 1.04E-01 1.02E-01
DAP 1.08E-05 2.79E-07 6.72E-03 2.86E-02 1.43E-06 1.96E-07 1.25E-02 1.93E-02
Accomodation 6.60E-07 7.67E-08 6.18E-03 7.63E-03 4.38E-07 2.90E-08 8.42E-03 3.52E-03
Inhibition

Induced
Spiking

2.01E-04 4.84E-05 4.11E-02 9.98E-02 4.41E-05 1.57E-05 5.00E-02 3.58E-02

Inhibition

Induced
Bursting

2.52E-06 2.55E-07 7.09E-02 9.06E-02 2.86E-06 2.46E-07 6.02E-02 5.98E-02

Mean 1.15E-02 1.19E-02 7.82E-02 7.24E-02 1.35E-02 1.95E-02 8.10E-02 6.46E-02

Table 3: NRMSE for each firing pattern, arithmetic and equation type.

Firing Type Ref Standard Equation Ref Rescaled Equations
64-bit 32-bit 16-bit 64-bit 32-bit 16-bit
Float Float Posit Float Posit Float Float Posit Float Posit

Tonic Spiking 38 = = = = 38 = = = =
Phasic Spiking 1 = = = -1 1 = = = =
Tonic Bursting 124 = = = = 124 = = -2 =
Phasic Bursting 7 = = = -7 7 = = -1 -1
Mixed Mode 33 = = = = 33 = = = -1
SFA 38 = = = = 38 = = = =
Class 1 115 = = = = 115 = = = =
Class 2 166 = +1 +1 +2 167 = = +1 -1
Spike Latency 1 = = = = 1 = = = =
Subthreshold

Oscillation
1 = = = = 1 = = = =

Resonator 1 = = = -1 1 = = +1 =
Integrator 1 = = = = 1 = = = =
Rebound Spike 1 = = = -1 1 = = -1 -1
Rebound Burst 11 = = +103 -11 11 = = -11 -11
Threshold

Variability
1 = = -1 -1 1 = = -1 =

Bistability 5 = = +19 -3 5 = = +19 +21
DAP 1 = = = +2 1 = = = +1
Accomodation 1 = = = = 1 = = = =
Inhibition

Induced
Spiking

4 = = = = 4 = = = =

Inhibition

Induced
Bursting

16 = = = = 16 = = = =

Table 4: Spike count deviations over 1000ms for each firing type, equation type and arithmetic. ‘=’ signifies no difference from the 64-bit
reference.

9



Firing Type
Standard Equations

Accumulated Spike Timing
Error (ms)

Rescaled Equations
Accumulated Spike Timing

Error (ms)
32-bit 16-bit 32-bit 16-bit

Float Posit Float Posit Float Posit Float Posit

Tonic Spiking 0.00 0.00 166.50 18.50 0.00 0.00 166.50 0.00
Phasic Spiking 0.00 0.00 2.50 - 0.00 0.00 0.75 2.50
Tonic Bursting 0.00 0.00 0.00 14.25 0.00 0.00 - 0.00
Phasic Bursting 0.00 0.00 11.80 - 0.00 0.00 - -
Mixed Mode 0.00 0.00 21.75 11.00 0.00 0.00 116.25 -
SFA 0.00 0.00 132.25 140.25 0.00 0.00 8.50 140.25
Class 1 0.00 0.00 106.50 103.0 0.00 0.00 163.25 69.25
Class 2 31.00 - - - 257.50 331.50 - -
Spike Latency 0.00 0.00 0.19 0.00 0.00 0.00 0.20 0.00
Subthreshold

Oscillation
0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.25

Resonator 0.00 0.00 5.00 - 0.00 0.00 - 0.50
Integrator 0.00 0.00 0.75 0.50 0.00 0.00 0.75 0.25
Rebound Spike 0.00 0.00 6.20 - 0.00 0.00 - -
Rebound Burst 0.00 0.00 - - 0.00 0.00 - -
Threshold

Variability
0.00 0.00 - - 0.00 0.00 - 5.00

Bistability 0.00 0.00 - - 0.00 0.00 - -
DAP 0.00 0.00 0.00 - 0.00 0.00 0.10 -
Accomodation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Inhibition

Induced
Spiking

0.00 0.00 2.00 15.00 0.00 0.00 7.50 3.00

Inhibition

Induced
Bursting

0.00 0.00 78.00 78.00 0.00 0.00 40.00 54.00

Mean 1.55 0.00 33.36 34.59 12.88 16.58 42.00 21.15

Table 5: Absolute accumulated spike timing error over 1000ms for each firing type using both standard and rescaled equations, comparing
32-bit and 16-bit arithmetics with the FP64 reference.
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Figure 7: A comparison of FP16 and FP64 arithmetic simulating tonic spiking over 1000ms. (a) shows the first 100ms of the simulation and
(b) the final 50ms. Initially in (a), it can be seen that there is good alignment between the FP16 with the FP64 reference. However, as the
simulation proceeds, the lag – caused by accumulated arithmetic error – becomes clearly visible in (b).

ple to implement in hardware, it inevitably increases the
complexity of the design.

Similarly, Jin et al. [29] also achieved a spiking Izhike-
vich neuron using only 16-bits on the SpiNNaker system.

However, in their work they needed to use two scaling fac-
tors and to rewrite the equations (Equation 9 and Equa-
tion 10) to better fit with the ARM instruction set. Hav-
ing gone beyond simply rescaling, it becomes difficult to
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Figure 10: A comparison of posit16 and FP64 arithmetic simulating tonic spiking over 1000ms. (a) shows the first 100ms of the simulation
and (b) the final 50ms. Very little spike timing error can be seen in either (a) or (b) meaning posit16 arithmetic has introduced very few
errors during the simulation.
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Figure 11: Both (a) and (b) show the last 50ms of simulation, where (a) employs FP16 and (b) uses posit16 arithmetic when using the
rescaled equations. (a) shows that rescaling does not improve the accuracy in the FP16 case. However, (b) demonstrates the elimination of
timing errors in posit16 when using rescaled equations.

make comparisons with other Izhikevich implementations.
Moreover, they did not assess their results for accuracy,
making their work hard to compare against and difficult
to replicate on non-ARM hardware. Nor did they attempt
to reproduce all 20 firing patterns. Hence, while it has
been previously demonstrated that 16-bit Izhikevich mod-
els are possible using 16-bit fixed-point arithmetic, it has
not been shown that this is possible without either chang-
ing the equations considerably, or using a much more com-
plicated system to ameliorate the arithmetic errors. Nor
has it been shown that at reduced precision, all firing types
are possible. Hence, we have not considered fixed-point in
this work.

4. Conclusion

The objective of this study was to examine the feasibil-
ity of employing posit arithmetic as an alternative to FP in
running SNN simulations using Izhikevich neurons. Addi-
tionally, the study aimed to explore the effect on accuracy
of reducing the bit depth in both number systems. Typ-
ically, reducing the bit-depth has several advantages such
as speed and power efficiency, but is often deleterious to
accuracy. Hence, the impact of rescaling the equations, as
a potential approach to mitigating this reduced accuracy
was also investigated. This is the first study to establish
quantitatively how posit arithmetic differs from FP in this
context. Our research shows that there is very little dif-
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Figure 12: Class 2 using FP32 and standard equations. (a) shows the first 250ms of the simulation and (b) the final 50ms. A slight timing
lag can be seen in (b).

ference between number systems at 32-bit either in terms
of membrane voltage or spike timing. However, when the
bit-depth was reduced to 16-bit errors become detectable,
but generally posit arithmetic is more accurate than FP16.
Most notably, we showed the advantage of rescaling the
Izhikevich equations when using posit arithmetic, espe-
cially for tonic firing. These results imply that any future
SNN hardware development may want to overlook a ded-
icated floating-point unit and first consider a posit based
system. This could allow for more efficient utilisation of
silicon resources in such systems.

While this study provides several important positive
contributions, it suffers from a number of limitations. No-
tably, only one neuron type was tested. Reducing or in-
creasing the complexity of the equations will likely have
an impact on the performance of both arithmetic systems.
A further limitation is the use of a single ODE solver and
keeping the update step size to the original values defined
by Izhikevich. Both of these variables have previously been
show to have a significant impact on SNN accuracy [23].
Additionally, this study only explored one mitigation tech-
nique – rescaling by a constant factor. It might be ex-
pected that different scaling factors could affect accuracy
to differing extents, as was found in Klöwer et al. [30].
Other mitigation techniques are also possible but were not
explored here, such as using mixed precision with a larger
bit-depth for variables which require a higher precision or
intermediate results which can be outside of the optimal
range for a particular arithmetic. This might be addressed
by reordering or precomputing various values, and this was
not considered in this work. Nevertheless, this study offers
some important contributions and highlights posit arith-
metic as an interesting avenue of future SNN research. We
therefore suggest future work attempt to establish the im-
portance of ODE solver choice and time-step size on accu-
racy while running posit-based SNN simulations.
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