291 research outputs found

    Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool 'CubeX'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The frequency of a haplotype comprising one allele at each of two loci can be expressed as a cubic equation (the 'Hill equation'), the solution of which gives that frequency. Most haplotype and linkage disequilibrium analysis programs use iteration-based algorithms which substitute an estimate of haplotype frequency into the equation, producing a new estimate which is repeatedly fed back into the equation until the values converge to a maximum likelihood estimate (expectation-maximisation).</p> <p>Results</p> <p>We present a program, "CubeX", which calculates the biologically possible exact solution(s) and provides estimated haplotype frequencies, D', r<sup>2 </sup>and <it>χ</it><sup>2 </sup>values for each. CubeX provides a "complete" analysis of haplotype frequencies and linkage disequilibrium for a pair of biallelic markers under situations where sampling variation and genotyping errors distort sample Hardy-Weinberg equilibrium, potentially causing more than one biologically possible solution. We also present an analysis of simulations and real data using the algebraically exact solution, which indicates that under perfect sample Hardy-Weinberg equilibrium there is only one biologically possible solution, but that under other conditions there may be more.</p> <p>Conclusion</p> <p>Our analyses demonstrate that lower allele frequencies, lower sample numbers, population stratification and a possible |D'| value of 1 are particularly susceptible to distortion of sample Hardy-Weinberg equilibrium, which has significant implications for calculation of linkage disequilibrium in small sample sizes (eg HapMap) and rarer alleles (eg paucimorphisms, q < 0.05) that may have particular disease relevance and require improved approaches for meaningful evaluation.</p

    A gene-centric analysis of activated partial thromboplastin time and activated protein C resistance using the HumanCVD focused genotyping array.

    Get PDF
    Activated partial thromboplastin time (aPTT) is an important routine measure of intrinsic blood coagulation. Addition of activated protein C (APC) to the aPTT test to produce a ratio, provides one measure of APC resistance. The associations of some genetic mutations (eg, factor V Leiden) with these measures are established, but associations of other genetic variations remain to be established. The objective of this work was to test for association between genetic variants and blood coagulation using a high-density genotyping array. Genetic association with aPTT and APC resistance was analysed using a focused genotyping array that tests approximately 50 000 single-nucleotide polymorphisms (SNPs) in nearly 2000 cardiovascular candidate genes, including coagulation pathway genes. Analyses were conducted on 2544 European origin women from the British Women's Heart and Health Study. We confirm associations with aPTT at the coagulation factor XII (F12)/G protein-coupled receptor kinase 6 (GRK6) and kininogen 1 (KNG1)/histidine-rich glycoprotein (HRG) loci, and identify novel SNPs at the ABO locus and novel locus kallikrein B (KLKB1)/F11. In addition, we confirm association between APC resistance and factor V Leiden mutation, and identify novel SNP associations with APC resistance in the HRG and F5/solute carrier family 19 member 2 (SLC19A2) regions. In conclusion, variation at several genetic loci influences intrinsic blood coagulation as measured by both aPTT and APC resistance

    The Trypanosoma cruzi Sylvio X10 strain maxicircle sequence: the third musketeer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chagas disease has a diverse pathology caused by the parasite <it>Trypanosoma cruzi</it>, and is indigenous to Central and South America. A pronounced feature of the trypanosomes is the kinetoplast, which is comprised of catenated maxicircles and minicircles that provide the transcripts involved in uridine insertion/deletion RNA editing. <it>T. cruzi </it>exchange genetic material through a hybridization event. Extant strains are grouped into six discrete typing units by nuclear markers, and three clades, A, B, and C, based on maxicircle gene analysis. Clades A and B are the more closely related. Representative clade B and C maxicircles are known in their entirety, and portions of A, B, and C clades from multiple strains show intra-strain heterogeneity with the potential for maxicircle taxonomic markers that may correlate with clinical presentation.</p> <p>Results</p> <p>To perform a genome-wide analysis of the three maxicircle clades, the coding region of clade A representative strain Sylvio X10 (a.k.a. Silvio X10) was sequenced by PCR amplification of specific fragments followed by assembly and comparison with the known CL Brener and Esmeraldo maxicircle sequences. The clade A rRNA and protein coding region maintained synteny with clades B and C. Amino acid analysis of non-edited and 5'-edited genes for Sylvio X10 showed the anticipated gene sequences, with notable frameshifts in the non-edited regions of Cyb and ND4. Comparisons of genes that undergo extensive uridine insertion and deletion display a high number of insertion/deletion mutations that are likely permissible due to the post-transcriptional activity of RNA editing.</p> <p>Conclusion</p> <p>Phylogenetic analysis of the entire maxicircle coding region supports the closer evolutionary relationship of clade B to A, consistent with uniparental mitochondrial inheritance from a discrete typing unit TcI parental strain and studies on smaller fragments of the mitochondrial genome. Gene variance that can be corrected by RNA editing hints at an unusual depth for maxicircle taxonomic markers, which will aid in the ability to distinguish strains, their corresponding symptoms, and further our understanding of the <it>T. cruzi </it>population structure. The prevalence of apparently compromised coding regions outside of normally edited regions hints at undescribed but active mechanisms of genetic exchange.</p

    Variants of ADRA2A are associated with fasting glucose, blood pressure, body mass index and type 2 diabetes risk: meta-analysis of four prospective studies

    Get PDF
    AIMS/HYPOTHESIS: We quantified the effect of ADRA2A (encoding α-2 adrenergic receptor) variants on metabolic traits and type 2 diabetes risk, as reported in four studies. METHODS: Genotype data for ADRA2A single nucleotide polymorphisms (SNPs) rs553668 and rs10885122 were analysed in >17,000 individuals (1,307 type 2 diabetes cases) with regard to metabolic traits and type 2 diabetes risk. Two studies (n = 9,437), genotyped using the Human Cardiovascular Disease BeadChip, provided 12 additional ADRA2A SNPs. RESULTS: Rs553668 was associated with per allele effects on fasting glucose (0.03 mmol/l, p = 0.016) and type 2 diabetes risk (OR 1.17, 95% CI 1.04-1.31; p = 0.01). No significant association was observed with rs10885122. Of the 12 SNPs, several showed associations with metabolic traits. Overall, after variable selection, rs553668 was associated with type 2 diabetes risk (OR 1.38, 95% CI 1.09-1.73; p = 0.007). rs553668 (per allele difference 0.036 mmol/l, 95% CI 0.008-0.065) and rs17186196 (per allele difference 0.066 mmol/l, 95% CI 0.017-0.115) were independently associated with fasting glucose, and rs17186196 with fasting insulin and HOMA of insulin resistance (4.3%, 95% CI 0.6-8.1 and 4.9%, 95% CI 1.0-9.0, respectively, per allele). Per-allele effects of rs491589 on systolic and diastolic blood pressure were 1.19 mmHg (95% CI 0.43-1.95) and 0.61 mmHg (95% CI 0.11-1.10), respectively, and those of rs36022820 on BMI 0.58 kg/m(2) (95% CI 0.15-1.02). CONCLUSIONS/INTERPRETATION: Multiple ADRA2A SNPs are associated with metabolic traits, blood pressure and type 2 diabetes risk. The α-2 adrenergic receptor should be revisited as a therapeutic target for reduction of the adverse consequences of metabolic trait disorders and type 2 diabetes

    A New Endemic Focus of Chagas Disease in the Northern Region of Veraguas Province, Western Half Panama, Central America

    Get PDF
    Background: Chagas disease was originally reported in Panama in 1931. Currently, the best knowledge of this zoonosis is restricted to studies done in historically endemic regions. However, little is known about the distribution and epidemiology of Chagas disease in other rural areas of the country. Methods and Findings: A cross-sectional descriptive study was carried out between May 2005 – July 2008 in four rural communities of the Santa Fe District, Veraguas Province. The study included an entomologic search to collect triatomines, bloodmeal type identification and infection rate with trypanosomes in collected vectors using a dot- blot and PCR analysis, genotyping of circulating Trypanosoma cruzi (mini-exon gene PCR analysis) and the detection of chagasic antibodies among inhabitants. The vector Rhodnius pallescens was more frequently found in La Culaca and El Pantano communities (788 specimens), where it was a sporadic household visitor. These triatomines presented darker coloration and larger sizescompared with typical specimens collected in Central Panama. Triatoma dimidiata was more common in Sabaneta de El Macho (162 specimens). In one small sub-region (El Macho), 60 % of the houses were colonized by this vector. Of the examined R. pallescens, 54.7.0 % (88/161) had fed on Didelphis marsupialis, and 24.6 % (34/138) of T. dimidiata specimens collected inside houses were positive for human blood. R. pallescens presented an infection index with T. cruzi of 17.7 % (24/ 136), with T. rangeli of 12.5 % (17/136) and 50.7 % (69/136) were mixed infections. In 117 T. dimidiata domestic specimens th

    A common variant of the MACC1 gene is significantly associated with overall survival in colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The newly discovered metastasis-associated in colon cancer-1 (MACC1) gene is a key regulator of the HGF/MET pathway. Deregulation of HGF/MET signaling is reported as a prognostic marker for tumorigenesis, early stage invasion, and metastasis. High expression levels of MACC1 have been associated with colon cancer metastasis and reduced survival. Potential links between the genetic diversity of the MACC1 locus and overall survival are unknown. We therefore investigated the association between MACC1 tagging single nucleotide polymorphisms (SNPs) and overall survival in a large cohort of colorectal cancer patients.</p> <p>Methods</p> <p>The study included 318 subjects with histopathologically proven colorectal cancer at the Academic Teaching Hospital Feldkirch, Austria. Survival data were provided by the federal agency for statistics in Austria. Genomic DNA was isolated from formalin-fixed paraffin-embedded specimens; six tagging SNPs (rs1990172, rs3114446, rs10275612, rs3095007, rs3095009, and rs7780032), capturing most of the common variants of the MACC1 locus, were genotyped by SNaPshot assays.</p> <p>Results</p> <p>Over a mean follow up period of 5.3 (± 1.0) years, 94 deaths were recorded. Carriers of the G-allele of SNP rs1990172 showed a significantly decreased overall survival (additive HR = 1.38 [1.05-1.82]; <it>p </it>= 0.023). Multivariate analysis adjusted for age and UICC tumor stage confirmed this result (HR = 1.49 [1.12-1.98]; <it>p </it>= 0.007). Other investigated genetic variants of the MACC1 gene were not significantly associated with overall survival (<it>p</it>-values > 0.05).</p> <p>Conclusions</p> <p>For the first time, our study investigated the influence of MACC1 tagging polymorphisms on overall survival suggesting SNP rs1990172 as a predictor for reduced overall survival in colorectal cancer patients. Further studies will be required to validate our findings.</p
    corecore