79 research outputs found

    A holistic review of the medical school admission process: examining correlates of academic underperformance

    Get PDF
    Background: Despite medical school admission committees’ best efforts, a handful of seemingly capable students invariably struggle during their first year of study. Yet, even as entrance criteria continue to broaden beyond cognitive qualifications, attention inevitably reverts back to such factors when seeking to understand these phenomena. Using a host of applicant, admission, and post-admission variables, the purpose of this inductive study, then, was to identify a constellation of student characteristics that, taken collectively, would be predictive of students at-risk of underperforming during the first year of medical school. In it, we hypothesize that a wider range of factors than previously recognized could conceivably play roles in understanding why students experience academic problems early in the medical educational continuum. Methods: The study sample consisted of the five most recent matriculant cohorts from a large, southeastern medical school (n=537). Independent variables reflected: 1) the personal demographics of applicants (e.g., age, gender); 2) academic criteria (e.g., undergraduate grade point averages [GPA], medical college admission test); 3) selection processes (e.g., entrance track, interview scores, committee votes); and 4) other indicators of personality and professionalism (e.g., Mayer-Salovey-Caruso Emotional Intelligence Test™ emotional intelligence scores, NEO PI-R™ personality profiles, and appearances before the Professional Code Committee [PCC]). The dependent variable, first-year underperformance, was defined as ANY action (repeat, conditionally advance, or dismiss) by the college's Student Progress and Promotions Committee (SPPC) in response to predefined academic criteria. This study protocol was approved by the local medical institutional review board (IRB). Results: Of the 537 students comprising the study sample, 61 (11.4%) met the specified criterion for academic underperformance. Significantly increased academic risks were identified among students who 1) had lower mean undergraduate science GPAs (OR=0.24, p=0.001); 2) entered medical school via an accelerated BS/MD track (OR=16.15, p=0.002); 3) were 31 years of age or older (OR=14.76, p=0.005); and 4) were non-unanimous admission committee admits (OR=0.53, p=0.042). Two dimensions of the NEO PI-R™ personality inventory, openness (+) and conscientiousness (−), were modestly but significantly correlated with academic underperformance. Only for the latter, however, were mean scores found to differ significantly between academic performers and underperformers. Finally, appearing before the college's PCC (OR=4.21, p=0.056) fell just short of statistical significance. Conclusions: Our review of various correlates across the matriculation process highlights the heterogeneity of factors underlying students’ underperformance during the first year of medical school and challenges medical educators to understand the complexity of predicting who, among admitted matriculants, may be at future academic risk

    The Role of Medical Education in Reducing Health Care Disparities: The First Ten Years of the UCLA/Drew Medical Education Program

    Get PDF
    BACKGROUND: The University of California, Los Angeles (UCLA)/Charles R. Drew University Medical Education Program was developed to train physicians for practice in underserved areas. The UCLA/Drew Medical Education Program students receive basic science instruction at UCLA and complete their required clinical rotations in South Los Angeles, an impoverished urban community. We have previously shown that, in comparison to their UCLA counterparts, students in the Drew program had greater odds of maintaining their commitment to medically disadvantaged populations over the course of medical education. OBJECTIVE: To examine the independent association of graduation from the UCLA/Drew program with subsequent choice of physician practice location. We hypothesized that participation in the UCLA/Drew program predicts future practice in medically disadvantaged areas, controlling for student demographics such as race/ethnicity and gender, indicators of socioeconomic status, and specialty choice. DESIGN: Retrospective cohort study. PARTICIPANTS: Graduates (1,071) of the UCLA School of Medicine and the UCLA/Drew Medical Education Program from 1985–1995, practicing in California in 2003 based on the address listed in the American Medical Association (AMA) Physician Masterfile. MEASUREMENTS: Physician address was geocoded to a California Medical Service Study Area (MSSA). A medically disadvantaged community was defined as meeting any one of the following criteria: (a) federally designated HPSA or MUA; (b) rural area; (c) high minority area; or (d) high poverty area. RESULTS: Fifty-three percent of UCLA/Drew graduates are located in medically disadvantaged areas, in contrast to 26.1% of UCLA graduates. In multivariate analyses, underrepresented minority race/ethnicity (OR: 1.57; 95% CI: 1.10–2.25) and participation in the Drew program (OR: 2.47; 95% CI: 1.59–3.83) were independent predictors of future practice in disadvantaged areas. CONCLUSIONS: Physicians who graduated from the UCLA/Drew Medical Education Program have higher odds of practicing in underserved areas than those who completed the traditional UCLA curriculum, even after controlling for other factors such as race/ethnicity. The association between participation in the UCLA/Drew Medical Education Program and physician practice location suggests that medical education programs may reinforce student goals to practice in disadvantaged communities

    Study design and rationale of "Synergistic Effect of Combination Therapy with Cilostazol and ProbUcol on Plaque Stabilization and Lesion REgression (SECURE)" study: a double-blind randomised controlled multicenter clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probucol, a cholesterol-lowering agent that paradoxically also lowers high-density lipoprotein cholesterol has been shown to prevent progression of atherosclerosis. The antiplatelet agent cilostazol, which has diverse antiatherogenic properties, has also been shown to reduce restenosis in previous clinical trials. Recent experimental studies have suggested potential synergy between probucol and cilostazol in preventing atherosclerosis, possibly by suppressing inflammatory reactions and promoting cholesterol efflux.</p> <p>Methods/design</p> <p>The Synergistic Effect of combination therapy with Cilostazol and probUcol on plaque stabilization and lesion REgression (SECURE) study is designed as a double-blind, randomised, controlled, multicenter clinical trial to investigate the effect of cilostazol and probucol combination therapy on plaque volume and composition in comparison with cilostazol monotherapy using intravascular ultrasound and Virtual Histology. The primary end point is the change in the plaque volume of index intermediate lesions between baseline and 9-month follow-up. Secondary endpoints include change in plaque composition, neointimal growth after implantation of stents at percutaneous coronary intervention target lesions, and serum levels of lipid components and biomarkers related to atherosclerosis and inflammation. A total of 118 patients will be included in the study.</p> <p>Discussion</p> <p>The SECURE study will deliver important information on the effects of combination therapy on lipid composition and biomarkers related to atherosclerosis, thereby providing insight into the mechanisms underlying the prevention of atherosclerosis progression by cilostazol and probucol.</p> <p>Trial registration number</p> <p>ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT01031667">NCT01031667</a></p

    Superoxide Dismutase 1 and tgSOD1G93A Mouse Spinal Cord Seed Fibrils, Suggesting a Propagative Cell Death Mechanism in Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that specifically affects motor neurons and leads to a progressive and ultimately fatal loss of function, resulting in death typically within 3 to 5 years of diagnosis. The disease starts with a focal centre of weakness, such as one limb, and appears to spread to other parts of the body. Mutations in superoxide dismutase 1 (SOD1) are known to cause disease and it is generally accepted they lead to pathology not by loss of enzymatic activity but by gain of some unknown toxic function(s). Although different mutations lead to varying tendencies of SOD1 to aggregate, we suggest abnormal proteins share a common misfolding pathway that leads to the formation of amyloid fibrils.Methodology/Principal Findings: Here we demonstrate that misfolding of superoxide dismutase 1 leads to the formation of amyloid fibrils associated with seeding activity, which can accelerate the formation of new fibrils in an autocatalytic cascade. The time limiting event is nucleation to form a stable protein "seed" before a rapid linear polymerisation results in amyloid fibrils analogous to other protein misfolding disorders. This phenomenon was not confined to fibrils of recombinant protein as here we show, for the first time, that spinal cord homogenates obtained from a transgenic mouse model that overexpresses mutant human superoxide dismutase 1 (the TgSOD1(G93A) mouse) also contain amyloid seeds that accelerate the formation of new fibrils in both wildtype and mutant SOD1 protein in vitro.Conclusions/Significance: These findings provide new insights into ALS disease mechanism and in particular a mechanism that could account for the spread of pathology throughout the nervous system. This model of disease spread, which has analogies to other protein misfolding disorders such as prion disease, also suggests it may be possible to design assays for therapeutics that can inhibit fibril propagation and hence, possibly, disease progression

    Integrated sensitive on-chip ion field effect transistors based on wrinkled InGaAs nanomembranes

    Get PDF
    Self-organized wrinkling of pre-strained nanomembranes into nanochannels is used to fabricate a fully integrated nanofluidic device for the development of ion field effect transistors (IFETs). Constrained by the structure and shape of the membrane, the deterministic wrinkling process leads to a versatile variation of channel types such as straight two-way channels, three-way branched channels, or even four-way intersection channels. The fabrication of straight channels is well controllable and offers the opportunity to integrate multiple IFET devices into a single chip. Thus, several IFETs are fabricated on a single chip using a III-V semiconductor substrate to control the ion separation and to measure the ion current of a diluted potassium chloride electrolyte solution

    Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile

    Full text link

    Direct observation of Cr magnetic order in CoCrTa and CoCrPt thin films

    No full text
    Magnetic circular dichroism measurements of room temperature, sputter deposited Co86Cr12Ta2 and CoS6Cr12Pt2 films were performed to investigate the local magnetic ordering of the Co and Cr atoms. The results demonstrate that the Cr has a net magnetic moment and that a small fraction of the Cr is magnetically oriented opposite to the Co moment. (C) 1997 American Institute of Physics.open115sciescopu
    corecore