37 research outputs found

    Optimization of an Alkylpolyglucoside-Based Dishwashing Detergent Formulation.

    Get PDF
    The aim of this work was to formulate and optimize the washing performance of an alkylpolyglucoside-based dishwashing detergent. The liquid detergent was formulated with five ingredients of commercial origin: anionic (linear sodium alkylbenzenesulfonate and sodium laurylethersulfate), nonionic (C12–C14 alkylpolyglucoside) and zwitterionic (a fatty acid amide derivative with a betaine structure) surfactants, and NaCl for viscosity control. In addition to the plate test, other properties were investigated including ‘‘cloud point’’, viscosity, and emulsion stability. Statistical analysis software was used to generate a central composite experimental design. Then, a second order design and analysis of experiments approach, known as the Response Surface Methodology, was set up to investigate the effects of the five components of the formulation on the studied properties in the region covering plausible component ranges. The method proved to be efficient for locating the domains of concentrations where the desired properties were met

    Effective description of general extensions of the Standard Model: the complete tree-level dictionary

    Get PDF
    We thank Nuria Rius and Arcadi Santamaria for an interesting discussion that motivated this work. We also thank Paco del Águila and Toni Pich for useful comments.We compute all the tree-level contributions to the Wilson coefficients of the dimension-six Standard-Model effective theory in ultraviolet completions with general scalar, spinor and vector feld content and arbitrary interactions. No assumption about the renormalizability of the high-energy theory is made. This provides a complete ultraviolet/ infrared dictionary at the classical level, which can be used to study the low-energy implications of any model of interest, and also to look for explicit completions consistent with low-energy dataThe work of J.C.C., M.P.V. and J.S. has been supported by the Spanish MICINN project FPA2013- 47836-C3-2-P, the MINECO project FPA2016-78220-C3-1-P (Fondos FEDER) and the Junta de Andalucía grant FQM101. The work of J.C.C. has also been supported by the Spanish MECD grant FPU14. The work of M.P.V. and J.S. has also been supported by the European Commission through the contract PITN-GA-2012-316704 (HIGGSTOOLS). J.C.C. is grateful for the hospitality of the Dipartimento di Fisica e Astronomia \Galileo Galilei" of the University of Padova during part of this work. J.S. would like to thank the Mainz Institute for Theoretical Physics (MITP) for its hospitality and partial support during the completion of this work

    Light stops, blind spots, and isospin violation in the MSSM

    Full text link

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link

    Divergent dynamics and the Kauzmann temperature in glass forming systems

    Get PDF
    In the last decade the challenging analysis of previtreous behavior of relaxation time (Ï.,(T)) in ultraviscous low molecular weight liquids led to the conceptual shift of the glass transition physics toward theories not predicting a finite-temperature divergence. This "breakthrough" experimental finding was strengthened by the discovery that "dynamic "(i.e. from τ(T) fitting) and thermodynamic estimations of the ideal glass (Kauzmann) temperature do not match, what in fact questioned its existence. In this report, due to the novel way of analysis based on the transformation of τ(T) experimental data to the activation energy temperature index form, the clear prevalence of the finite-temperature divergence is proved. The obtained dynamic singular temperatures clearly coincide with thermodynamic estimations of the Kauzmann temperature, thus solving also the second mystery. The comprehensive picture was obtained due to the analysis of 55 experimental data-sets, ranging from low molecular weight liquids and polymers to liquid crystal and plastic crystals

    Mortality Reduction Associated With β-Adrenoceptor Inhibition in Chronic Heart Failure Is Greater in Patients With Diabetes.

    No full text
    OBJECTIVE: Diabetes increases mortality in patients with chronic heart failure (CHF) and reduced left ventricular ejection fraction. Studies have questioned the safety of β-adrenoceptor blockers (β-blockers) in some patients with diabetes and reduced left ventricular ejection fraction. We examined whether β-blockers and ACE inhibitors (ACEI) are associated with differential effects on mortality in CHF patients with and without diabetes. RESEARCH DESIGN AND METHODS: We conducted a prospective cohort study of 1,797 patients with CHF recruited between 2006 and 2014, with mean follow-up of 4 years. β-Blocker dose was expressed as the equivalent dose of bisoprolol (mg/day) and ACEI dose as the equivalent dose of ramipril (mg/day). Cox regression analysis was used to examine the interaction between diabetes and drug dose on all-cause mortality. RESULTS: Patients with diabetes were prescribed larger doses of β-blocker and ACEI than were patients without diabetes. Increasing β-blocker dose was associated with lower mortality in patients with diabetes (8.9% per mg/day; 95% CI 5-12.6) and without diabetes (3.5% per mg/day; 95% CI 0.7-6.3), although the effect was larger in people with diabetes (interaction P = 0.027). Increasing ACEI dose was associated with lower mortality in patients with diabetes (5.9% per mg/day; 95% CI 2.5-9.2) and without diabetes (5.1% per mg/day; 95% CI 2.6-7.6), with similar effect size in these groups (interaction P = 0.76). CONCLUSIONS: Increasing β-blocker dose is associated with a greater prognostic advantage in CHF patients with diabetes than without diabetes

    Fragility and basic process energies in vitrifying systems

    Get PDF
    The concept of 'fragility' constitutes a central point of the glass transition science serving as the 'universal' metric linking previtreous dynamics of qualitatively distinct systems. Finding the fundamental meaning of fragility is the 'condicio sine qua' for reaching the long expected conceptual breakthrough in this domain. This report shows that fragility is determined by the ratio between two fundamental process energies, viz. the activation enthalpy and activation energy. The reasoning, avoiding any underlying physical model, is supported by the experimental evidence ranging from low molecular weight liquids and polymers to plastic crystals and liquid crystals. All these lead to the new general scaling plot for dynamics of arbitrary glass former. The limited adequacy of broadly used so far semi-empirical relationships between fragility and the activation energy is shown. Results presented remain valid for an arbitrary complex system and collective phenomena if their dynamics is described by the general super-Arrhenius relation.National Centre for Science (Poland
    corecore