193 research outputs found

    A Research Agenda for Helminth Diseases of Humans: Health Research and Capacity Building in Disease-Endemic Countries for Helminthiases Control

    Get PDF
    Capacity building in health research generally, and helminthiasis research particularly, is pivotal to the implementation of the research and development agenda for the control and elimination of human helminthiases that has been proposed thematically in the preceding reviews of this collection. Since helminth infections affect human populations particularly in marginalised and low-income regions of the world, they belong to the group of poverty-related infectious diseases, and their alleviation through research, policy, and practice is a sine qua non condition for the achievement of the United Nations Millennium Development Goals. Current efforts supporting research capacity building specifically for the control of helminthiases have been devised and funded, almost in their entirety, by international donor agencies, major funding bodies, and academic institutions from the developed world, contributing to the creation of (not always equitable) North–South “partnerships”. There is an urgent need to shift this paradigm in disease-endemic countries (DECs) by refocusing political will, and harnessing unshakeable commitment by the countries' governments, towards health research and capacity building policies to ensure long-term investment in combating and sustaining the control and eventual elimination of infectious diseases of poverty. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. This paper discusses the challenges confronting capacity building for parasitic disease research in DECs, describes current capacity building strategies with particular reference to neglected tropical diseases and human helminthiases, and outlines recommendations to redress the balance of alliances and partnerships for health research between the developed countries of the “North” and the developing countries of the “South”. We argue that investing in South–South collaborative research policies and capacity is as important as their North–South counterparts and is essential for scaled-up and improved control of helminthic diseases and ultimately for regional elimination

    A protease-based biosensor for the detection of schistosome cercariae

    Get PDF
    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access

    The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors

    Get PDF
    Abstract Background Anti-cancer drugs access solid tumors via blood vessels, and must penetrate tumor tissue to reach all cancer cells. Previous studies have demonstrated steep gradients of decreasing doxorubicin fluorescence with increasing distance from blood vessels, such that many tumor cells are not exposed to drug. Studies using multilayered cell cultures show that increased P-glycoprotein (PgP) is associated with better penetration of doxorubicin, while PgP inhibitors decrease drug penetration in tumor tissue. Here we evaluate the effect of PgP expression on doxorubicin distribution in vivo. Methods Mice bearing tumor sublines with either high or low expression of PgP were treated with doxorubicin, with or without pre-treatment with the PgP inhibitors verapamil or PSC 833. The distribution of doxorubicin in relation to tumor blood vessels was quantified using immunofluorescence. Results Our results indicate greater uptake of doxorubicin by cells near blood vessels in wild type as compared to PgP-overexpressing tumors, and pre-treatment with verapamil or PSC 833 increased uptake in PgP-overexpressing tumors. However, there were steeper gradients of decreasing doxorubicin fluorescence in wild-type tumors compared to PgP overexpressing tumors, and treatment of PgP overexpressing tumors with PgP inhibitors led to steeper gradients and greater heterogeneity in the distribution of doxorubicin. Conclusion PgP inhibitors increase uptake of doxorubicin in cells close to blood vessels, have little effect on drug uptake into cells at intermediate distances, and might have a paradoxical effect to decrease doxorubicin uptake into distal cells. This effect probably contributes to the limited success of PgP inhibitors in clinical trials

    Putting the treatment of paediatric schistosomiasis into context

    Get PDF
    Abstract Despite increased international efforts to control schistosomiasis using preventive chemotherapy, several challenges still exist in reaching the target populations. Until recently, preschool-aged children had been excluded from the recommended target population for mass drug administration, i.e. primary school children aged 6–15 years. Our studies and those of others provided the evidence base for the need to treat preschool-aged children that led to recommendations by the World Health Organization to include preschool-aged children in treatment programmes in 2010. The major challenge now lies in the unavailability of a child-size formulation of the appropriate anthelmintic drug, praziquantel. The currently available formulation of praziquantel presents several problems. First, it is a large tablet, making it difficult for young children and infants to swallow it and thus requires its breaking/crushing to allow for safe uptake. Second, it is bitter so it is often mixed with a sweetener to make it palatable for young children. Third, the current formulation of 600 mg does not allow for flexible dose adjustments for this age group. Thus, there is a need to formulate a child-appropriate praziquantel tablet. This paper discusses the target product profile for paediatric praziquantel, as well as knowledge gaps pertinent to the successful control of schistosome infection and disease in preschool-aged children

    SmCL3, a Gastrodermal Cysteine Protease of the Human Blood Fluke Schistosoma mansoni

    Get PDF
    Parasitic infection caused by blood flukes of the genus Schistosoma is a major global health problem. More than 200 million people are infected. Identifying and characterizing the constituent enzymes of the parasite's biochemical pathways should reveal opportunities for developing new therapies (i.e., vaccines, drugs). Schistosomes feed on host blood, and a number of proteolytic enzymes (proteases) contribute to this process. We have identified and characterized a new protease, SmCL3 (for Schistosoma mansoni cathepsin L3), that is found within the gut tissue of the parasite. We have employed various biochemical and molecular biological methods and sequence similarity analyses to characterize SmCL3 and obtain insights into its possible functions in the parasite, as well as its evolutionary position among cathepsin L proteases in general. SmCL3 hydrolyzes major host blood proteins (serum albumin and hemoglobin) and is expressed in parasite life stages infecting the mammalian host. Enzyme substrate specificity detected by positional scanning-synthetic combinatorial library was confirmed by molecular modeling. A sequence analysis placed SmCL3 to the cluster of other cathepsins L in accordance with previous phylogenetic analyses

    Identifying and evaluating field indicators of urogenital schistosomiasis-related morbidity in preschool-aged children

    Get PDF
    BACKGROUND:Several studies have been conducted quantifying the impact of schistosome infections on health and development in school-aged children. In contrast, relatively little is known about morbidity levels in preschool-aged children (≤ 5 years) who have been neglected in terms of schistosome research and control. The aim of this study was to compare the utility of available point-of-care (POC) morbidity diagnostic tools in preschool versus primary school-aged children (6-10 years) and determine markers which can be used in the field to identify and quantify Schistosoma haematobium-related morbidity. METHODS/PRINCIPAL FINDINGS:A comparative cross-sectional study was conducted to evaluate the performance of currently available POC morbidity diagnostic tools on Zimbabwean children aged 1-5 years (n=104) and 6-10 years (n=194). Morbidity was determined using the POC diagnostics questionnaire-based reporting of haematuria and dysuria, clinical examination, urinalysis by dipsticks, and urine albumin-to-creatinine ratio (UACR). Attributable fractions were used to quantify the proportion of morbidity attributable to S. haematobium infection. Based on results of attributable fractions, UACR was identified as the most reliable tool for detecting schistosome-related morbidity, followed by dipsticks, visual urine inspection, questionnaires, and lastly clinical examination. The results of urine dipstick attributes showed that proteinuria and microhaematuria accounted for most differences between schistosome egg-positive and negative children (T=-50.1; p<0.001). These observations were consistent in preschool vs. primary school-aged children. CONCLUSIONS/SIGNIFICANCE:Preschool-aged children in endemic areas can be effectively screened for schistosome-related morbidity using the same currently available diagnostic tools applicable to older children. UACR for detecting albuminuria is recommended as the best choice for rapid assessment of morbidity attributed to S. haematobium infection in children in the field. The use of dipstick microhaematuria and proteinuria as additional indicators of schistosome-related morbidity would improve the estimation of disease burden in young children
    • …
    corecore