66 research outputs found

    Determination of veterinary pharmaceutical runoffs from a swine manure pile using LC-MS/MS

    Get PDF
    The mass usage of veterinary pharmaceuticals in farms has contributed to environmental pollution in vicinity waters, soils, and sediments from farms and composting facilities. In the present study, we investigated the usage of four antibiotics (viz., lincomycin, sulfamethazine, sulfamethoxazole, and trimethoprim) to understand their contamination routes from livestock manure piles. Residual levels of these antibiotics in a nearby reservoir were set as a positive control (Site 1), and a swine manure pile in a farm (Site 2) and a soil sample around the manure pile (Site 3) were selected for this study. Artificial rainwater was flowed into the manure sample (Site 2), the soil sample around the manure pile (Site 3), and a soil sample around the vicinity river (Site 4). A stream sample (Site 5) around the manure pile and river water near the manure pile (Site 6) were also collected. For qualitative and quantitative analyses, analytical validation was performed, and all the four antibiotics were detected at Site 1 in the concentration range of 0.03-1.6 mu g/L. Lincomycin was the antibiotic with the highest detection level. At Site 2, the detection level of all antibiotics remained at 0.3-17.3 mu g/L, and their residual amounts were continuously detected in subsequent samples with approximately 30-fold decrease. The migration of antibiotics was confirmed to be independent of pH value. Therefore, this study indicates that farm manure pile should be thoroughly managed for antibiotic contamination in vicinity areas with periodical monitoring, especially waterways

    Effects of nutrient addition and soil drainage on germination of N-fixing and non-N-fixing tropical dry forest tree species

    Get PDF
    To develop generalised predictions regarding the effects of atmospheric nitrogen (N) and phosphorus (P) deposition on vegetation communities, it is necessary to account for the impacts of increased nutrient availability on the early life history stages of plants. Additionally, it is important to determine if these responses (a) differ between plant functional groups and (b) are modulated by soil drainage, which may affect the persistence of added nutrients. We experimentally assessed seed germination responses (germination proportion and germination energy, i.e. time to germination) of commonly occurring N-fixing and non-N-fixing tropical dry forest tree species found in India to simulated N and P deposition in well-drained soils, as well as soils with impeded drainage. When soils were not allowed to drain, germination proportion declined with nutrient addition, while germination energy remained unchanged. Stronger declines in germination proportion were observed for N-fixing species. In free-draining soils, nutrient addition did not affect germination proportion in either functional group. However, we detected a trend of delayed germination with nutrient addition, especially in N-fixers. Our results suggest that nutrient deposition can lead to potential shifts in functional dominance and tree community composition of tropical dry forests in the long term through its effects on early life stages of trees, although the mechanisms underlying the observed germination responses remain unclear. Further, such effects are likely to be spatially variable across the geographic range in which tropical dry forests occur depending on soil drainage properties

    Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology

    Get PDF
    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration

    Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’

    Get PDF

    Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California

    No full text
    Generic Escherichia coli was isolated from surface water and groundwater samples from two dairies in Northern California and tested for susceptibility to antibiotics. Surface samples were collected from flush water, lagoon water, and manure solids, and groundwater samples were collected from monitoring wells. Although E. coli was ubiquitous in surface samples with concentrations ranging from several hundred thousand to over a million colony-forming units per 100 mL of surface water or per gram of surface solids, groundwater under the influence of these high surface microbial loadings had substantially fewer bacteria (3- to 7-log10 reduction). Among 80 isolates of E. coli tested, 34 (42.5%) were resistant to one or more antibiotics and 22 (27.5%) were multi-antibiotic resistant (resistant to ≥3 antibiotics), with resistance to tetracycline, cefoxitin, amoxicillin/clavulanic acid, and ampicillin being the most common. E. coli isolates from the calf hutch area exhibited the highest levels of multi-antibiotic resistance, much higher than isolates in surface soil solids from heifer and cow pens, flush alleys, manure storage lagoons, and irrigated fields. Among E. coli isolates from four groundwater samples, only one sample exhibited resistance to ceftriaxone, chloramphenicol, and tetracycline, indicating the potential of groundwater contamination with antibiotic-resistant bacteria from dairy operations
    corecore