20 research outputs found

    The effect of cigarette smoking, alcohol consumption and fruit and vegetable consumption on IVF outcomes: A review and presentation of original data

    Get PDF
    Background - Lifestyle factors including cigarette smoking, alcohol consumption and nutritional habits impact on health, wellness, and the risk of chronic diseases. In the areas of in-vitro fertilization (IVF) and pregnancy, lifestyle factors influence oocyte production, fertilization rates, pregnancy and pregnancy loss, while chronic, low-grade oxidative stress may underlie poor outcomes for some IVF cases. Methods - Here, we review the current literature and present some original, previously unpublished data, obtained from couples attending the PIVET Medical Centre in Western Australia. Results - During the study, 80 % of females and 70 % of male partners completed a 1-week diary documenting their smoking, alcohol and fruit and vegetable intake. The subsequent clinical outcomes of their IVF treatment such as quantity of oocytes collected, fertilization rates, pregnancy and pregnancy loss were submitted to multiple regression analysis, in order to investigate the relationship between patients, treatment and the recorded lifestyle factors. Of significance, it was found that male smoking caused an increased risk of pregnancy loss (p = 0.029), while female smoking caused an adverse effect on ovarian reserve. Both alcohol consumption (β = 0.074, p < 0.001) and fruit and vegetable consumption (β = 0.034, p < 0.001) had positive effects on fertilization. Conclusion - Based on our results and the current literature, there is an important impact of lifestyle factors on IVF clinical outcomes. Currently, there are conflicting results regarding other lifestyle factors such as nutritional habits and alcohol consumption, but it is apparent that chronic oxidative stress induced by lifestyle factors and poor nutritional habits associate with a lower rate of IVF success

    Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Get PDF
    The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic

    The association between homocysteine in the follicular fluid with embryo quality and pregnancy rate in assisted reproductive techniques

    No full text
    PURPOSE: To investigate the association between follicular fluid homocysteine levels and embryo quality and pregnancy rates in patients undergoing assisted reproduction. METHODS: Fifty infertile women who were admitted to our clinic were enrolled in the study. Ovulation induction was performed by using GnRH agonist and gonadotropins. For each patient, homocysteine level in the follicular fluid was measured by using nephelometric method after the oocyte pick-up. The association between the homocysteine concentration in the follicular fluid and the oocyte–embryo quality, pregnancy rates and hormone levels were investigated. RESULTS: Mean ± SD Hcy was 9.6 ± 2.02 μmol/L and 14.9 ± 2.93 μmol/L in pregnant and non-pregnant women, respectively (p < 0.0001). There were no statistically significant differences between pregnant and non-pregnant women in mean age, duration of infertility, body mass index, the oocyte–embryo quality parameters, and hormone levels. Homocystein did not have any correlation with M2, late M2, and total number of oocytes, number of fertilized oocytes and transferred embryos, and embryo quality grade. Area under curve (AUC) of hcy for prediction of pregnancy failure was 0.922 (p = 0.0001, 95% Confidence interval 0.85–0.99). A threshold of 11.9 μmol/L of hcy had a sensitivity of 82%, specificity of 100%, positive predictive value of 100% and negative predictive value of 91.6% for prediction of pregnancy failure. The subgroup analysis in male factor infertility group (n = 28), showed that mean homocystein was 9.9 ± 2.44 μmol/L and 14.1 ± 2.72 μmol/L in pregnant and non-pregnant women, respectively (p = 0.002). CONCLUSION: Low follicular fluid homocysteine level is associated with a better chance of clinical pregnancy

    Genetic selection? A study of individual variation in the enzymes of folate metabolism

    Get PDF
    Background: Genetic variation in folate metabolism has been associated with survival in utero, the success of in vitro fertilisation, multiple pathologies and longevity. Methods: We have looked at the prevalence of genetic variants of the enzymes MTHFR and TYMS in 2,898 DNA samples derived from five cohorts collected in the United Kingdom. The simultaneous analysis of genetic variants of the MTHFR and TYMS loci was carried out to investigate a putative gene-gene interaction that was first observed in an elderly male population from Norfolk. Results: We have made a consistent observation in five population cohorts; the proportion of individuals who are homozygous for the 2R allele of the 5'UTR TYMS polymorphism is less in individuals who are homozygous for the T allele of MTHFR 677 than in individuals homozygous for the C allele of MTHFR 677 (p = 0.02). Conclusions: These data may suggest a gene-gene interaction and could be evidence of genetic selection, with some pregnancies more or less viable as a consequence of genetic variation. If these genetic phenomena affect the way folate is handled at the cellular level in utero it is possible that maternal folic acid intake may over-ride such genetic selection
    corecore