311 research outputs found
Shadows and traces in bicategories
Traces in symmetric monoidal categories are well-known and have many
applications; for instance, their functoriality directly implies the Lefschetz
fixed point theorem. However, for some applications, such as generalizations of
the Lefschetz theorem, one needs "noncommutative" traces, such as the
Hattori-Stallings trace for modules over noncommutative rings. In this paper we
study a generalization of the symmetric monoidal trace which applies to
noncommutative situations; its context is a bicategory equipped with an extra
structure called a "shadow." In particular, we prove its functoriality and
2-functoriality, which are essential to its applications in fixed-point theory.
Throughout we make use of an appropriate "cylindrical" type of string diagram,
which we justify formally in an appendix.Comment: 46 pages; v2: reorganized and shortened, added proof for cylindrical
string diagrams; v3: final version, to appear in JHR
Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity
In this work we investigate the canonical quantization of 2+1 gravity with
cosmological constant in the canonical framework of loop quantum
gravity. The unconstrained phase space of gravity in 2+1 dimensions is
coordinatized by an SU(2) connection and the canonically conjugate triad
field . A natural regularization of the constraints of 2+1 gravity can be
defined in terms of the holonomies of . As a first step
towards the quantization of these constraints we study the canonical
quantization of the holonomy of the connection on the
kinematical Hilbert space of loop quantum gravity. The holonomy operator
associated to a given path acts non trivially on spin network links that are
transversal to the path (a crossing). We provide an explicit construction of
the quantum holonomy operator. In particular, we exhibit a close relationship
between the action of the quantum holonomy at a crossing and Kauffman's
q-deformed crossing identity. The crucial difference is that (being an operator
acting on the kinematical Hilbert space of LQG) the result is completely
described in terms of standard SU(2) spin network states (in contrast to
q-deformed spin networks in Kauffman's identity). We discuss the possible
implications of our result.Comment: 19 pages, references added. Published versio
Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms
This paper studies variational principles for mechanical systems with symmetry and their applications to integration algorithms. We recall some general features of how to reduce variational principles in the presence of a symmetry group along with general features of integration algorithms for mechanical systems. Then we describe some integration algorithms based directly on variational principles using a
discretization technique of Veselov. The general idea for these variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the original systems invariants, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. The resulting mechanical integrators are second-order accurate, implicit, symplectic-momentum algorithms. We apply these integrators to the rigid body and the double spherical pendulum to show that the techniques are competitive with existing integrators
Loop Quantum Gravity a la Aharonov-Bohm
The state space of Loop Quantum Gravity admits a decomposition into
orthogonal subspaces associated to diffeomorphism equivalence classes of
spin-network graphs. In this paper I investigate the possibility of obtaining
this state space from the quantization of a topological field theory with many
degrees of freedom. The starting point is a 3-manifold with a network of
defect-lines. A locally-flat connection on this manifold can have non-trivial
holonomy around non-contractible loops. This is in fact the mathematical origin
of the Aharonov-Bohm effect. I quantize this theory using standard field
theoretical methods. The functional integral defining the scalar product is
shown to reduce to a finite dimensional integral over moduli space. A
non-trivial measure given by the Faddeev-Popov determinant is derived. I argue
that the scalar product obtained coincides with the one used in Loop Quantum
Gravity. I provide an explicit derivation in the case of a single defect-line,
corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the
relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
Loop Quantum Gravity
The problem of finding the quantum theory of the gravitational field, and
thus understanding what is quantum spacetime, is still open. One of the most
active of the current approaches is loop quantum gravity. Loop quantum gravity
is a mathematically well-defined, non-perturbative and background independent
quantization of general relativity, with its conventional matter couplings. The
research in loop quantum gravity forms today a vast area, ranging from
mathematical foundations to physical applications. Among the most significative
results obtained are: (i) The computation of the physical spectra of
geometrical quantities such as area and volume; which yields quantitative
predictions on Planck-scale physics. (ii) A derivation of the
Bekenstein-Hawking black hole entropy formula. (iii) An intriguing physical
picture of the microstructure of quantum physical space, characterized by a
polymer-like Planck scale discreteness. This discreteness emerges naturally
from the quantum theory and provides a mathematically well-defined realization
of Wheeler's intuition of a spacetime ``foam''. Long standing open problems
within the approach (lack of a scalar product, overcompleteness of the loop
basis, implementation of reality conditions) have been fully solved. The weak
part of the approach is the treatment of the dynamics: at present there exist
several proposals, which are intensely debated. Here, I provide a general
overview of ideas, techniques, results and open problems of this candidate
theory of quantum gravity, and a guide to the relevant literature.Comment: Review paper written for the electronic journal `Living Reviews'. 34
page
Membrane Sigma-Models and Quantization of Non-Geometric Flux Backgrounds
We develop quantization techniques for describing the nonassociative geometry
probed by closed strings in flat non-geometric R-flux backgrounds M. Starting
from a suitable Courant sigma-model on an open membrane with target space M,
regarded as a topological sector of closed string dynamics in R-space, we
derive a twisted Poisson sigma-model on the boundary of the membrane whose
target space is the cotangent bundle T^*M and whose quasi-Poisson structure
coincides with those previously proposed. We argue that from the membrane
perspective the path integral over multivalued closed string fields in Q-space
is equivalent to integrating over open strings in R-space. The corresponding
boundary correlation functions reproduce Kontsevich's deformation quantization
formula for the twisted Poisson manifolds. For constant R-flux, we derive
closed formulas for the corresponding nonassociative star product and its
associator, and compare them with previous proposals for a 3-product of fields
on R-space. We develop various versions of the Seiberg-Witten map which relate
our nonassociative star products to associative ones and add fluctuations to
the R-flux background. We show that the Kontsevich formula coincides with the
star product obtained by quantizing the dual of a Lie 2-algebra via convolution
in an integrating Lie 2-group associated to the T-dual doubled geometry, and
hence clarify the relation to the twisted convolution products for topological
nonassociative torus bundles. We further demonstrate how our approach leads to
a consistent quantization of Nambu-Poisson 3-brackets.Comment: 52 pages; v2: references adde
Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe
In three spacetime dimensions, general relativity drastically simplifies,
becoming a ``topological'' theory with no propagating local degrees of freedom.
Nevertheless, many of the difficult conceptual problems of quantizing gravity
are still present. In this review, I summarize the rather large body of work
that has gone towards quantizing (2+1)-dimensional vacuum gravity in the
setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms,
additions, missing references welcome; v2: minor changes, added reference
Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha
Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.United States. Dept. of EnergyUnited States. Advanced Research Projects Agency-Energ
- …
