96 research outputs found

    Delay Of Insulin Addition To Oral Combination Therapy Despite Inadequate Glycemic Control: Delay of Insulin Therapy

    Get PDF
    BACKGROUND: Patients and providers may be reluctant to escalate to insulin therapy despite inadequate glycemic control. OBJECTIVES: To determine the proportion of patients attaining and maintaining glycemic targets after initiating sulfonylurea and metformin oral combination therapy (SU/MET); to assess insulin initiation among patients failing SU/MET; and to estimate the glycemic burden incurred, stratified by whether HbA(1c) goal was attained and maintained. DESIGN: Longitudinal observational cohort study. SUBJECTS: Type 2 diabetes patients, 3,891, who newly initiated SU/MET between 1 January 1996 and 31 December 2000. MEASUREMENTS: Subjects were followed until insulin was added, health plan disenrolment, or until 31 December 2005. We calculated the number of months subjects continued SU/MET therapy alone, in total, and during periods of inadequate glycemic control; the A1C reached during those time periods; and total glycemic burden, defined as the estimated cumulative monthly difference between measured A1C and 8%. RESULTS: During a mean follow-up of 54.6 ± 28.6 months, 41.9% of the subjects added insulin, and 11.8% received maximal doses of both oral agents. Over half of SU/MET patients attained but failed to maintain A1C of 8%, yet continued SU/MET therapy for an average of nearly 3 years, sustaining glycemic burden equivalent to nearly 32 months of A1C levels of 9%. Another 18% of patients never attained the 8% goal with SU/MET, yet continued that therapy for an average of 30 months, reaching mean A1C levels of 10%. CONCLUSIONS: Despite inadequate glycemic control, a minority of patients added insulin or maximized oral agent doses, thus, incurring substantial glycemic burden on SU/MET. Additional studies are needed to examine the benefits of rapid titration to maximum doses and earlier initiation of insulin therapy

    Accurate Estimates of Microarray Target Concentration from a Simple Sequence-Independent Langmuir Model

    Get PDF
    Background: Microarray technology is a commonly used tool for assessing global gene expression. Many models for estimation of target concentration based on observed microarray signal have been proposed, but, in general, these models have been complex and platform-dependent. Principal Findings: We introduce a universal Langmuir model for estimation of absolute target concentration from microarray experiments. We find that this sequence-independent model, characterized by only three free parameters, yields excellent predictions for four microarray platforms, including Affymetrix, Agilent, Illumina and a custom-printed microarray. The model also accurately predicts concentration for the MAQC data sets. This approach significantly reduces the computational complexity of quantitative target concentration estimates. Conclusions: Using a simple form of the Langmuir isotherm model, with a minimum of parameters and assumptions, and without explicit modeling of individual probe properties, we were able to recover absolute transcript concentrations with high R 2 on four different array platforms. The results obtained here suggest that with a ‘‘spiked-in’ ’ concentration serie

    Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II

    Get PDF
    Lanthionine antibiotics are an important class of naturally-occurring antimicrobial peptides. The best-known, nisin, is a commercial food preservative. However, structural and mechanistic details on nisin/lipid II membrane complexes are currently lacking. Recently, we have developed empirical force-field parameters to model lantibiotics. Docking and molecular dynamics (MD) simulations have been used to study the nisin2:lipid II complex in bacterial membranes, which has been put forward as the building block of nisin/lipid II binary membrane pores. A Ile1Trp mutation of the N-terminus of nisin has been modelled and docked onto lipid II models; the computed binding affinity increased compared to wildtype. Wild-type nisin was also docked onto three different lipid II structures and a stable 2:1 nisin:lipid II complex formed. This complex was inserted into a membrane. Six independent MD simulations revealed key interactions in the complex, specifically the N terminal engagement of nisin with lipid II at the pyrophosphate and C-terminus of the pentapeptide chain. Nisin2 inserts into the membrane and we propose this is the first step in pore formation, mediated by the nisin N-terminus–lipid II pentapeptide hydrogen bond. The lipid II undecaprenyl chain adopted different conformations in the presence of nisin, which may also have implications for pore formation

    The role of specific biomarkers, as predictors of post-operative complications following flexible ureterorenoscopy (FURS), for the treatment of kidney stones: a single-centre observational clinical pilot-study in 37 patients

    Get PDF
    Abstract: Background: The number of patients diagnosed and subsequently treated for kidney stones is increasing, and as such the number of post-operative complications is likely to increase. At present, little is known about the role of specific biomarkers, following flexible ureterorenoscopy (FURS) for the surgical treatment of kidney stones. The main aim of the study was to evaluate the role of kidney and infection biomarkers, in patients undergoing FURS. Methods: Included were 37 patients (24 males, 13 females), who underwent elective FURS, for the treatment of kidney stones. Venous blood samples were collected from each patient: pre-operatively, and at 30 min, 2 and 4 h post-operatively. Changes to kidney (NGAL, Cystatin-C) and infection (MPO, PCT) biomarkers was quantified by means of ELISA, Biomerieux mini-vidas and Konelab 20 analysers. Results: Four patients developed post-operative complications (3 - UTIs with urinary retention, 1 - urosepsis. NGAL concentration increased significantly following FURS (p = 0.034). Although no significant changes were seen in Cystatin C, MPO and PCT (p ≥ 0.05) some key clinical observation were noted. Limiting factors for this study were the small number of patients recruited and restriction in blood sampling beyond 4 h. Conclusions: Although not confirmative, changes seen to biomarkers such as Cystatin C, NGAL and MPO in our observational clinical pilot-study may warrant further investigation, involving larger cohorts, to fully understand the role of these biomarkers and their potential association with post-operative complications which can develop following FURS

    Separation of Allelopathy from Resource Competition Using Rice/Barnyardgrass Mixed-Cultures

    Get PDF
    Plant-plant interference is the combined effect of allelopathy, resource competition, and many other factors. Separating allelopathy from resource competition is almost impossible in natural systems but it is important to evaluate the relative contribution of each of the two mechanisms on plant interference. Research on allelopathy in natural and cultivated plant communities has been hindered in the absence of a reliable method that can separate allelopathic effect from resource competition. In this paper, the interactions between allelopathic rice accession PI312777, non-allelopathic rice accession Lemont and barnyardgrass were explored respectively by using a target (rice)-neighbor (barnyardgrass) mixed-culture in hydroponic system. The relative competitive intensity (RCI), the relative neighbor effect (RNE) and the competitive ratio (CR) were used to quantify the intensity of competition between each of the two different potentially allelopathic rice accessions and barnyardgrass. Use of hydroponic culture system enabled us to exclude any uncontrolled factors that might operate in the soil and we were able to separate allelopathy from resource competition between each rice accession and barnyardgrass. The RCI and RNE values showed that the plant-plant interaction was positive (facilitation) for PI312777 but that was negative (competition) for Lemont and barnyardgrass in rice/barnyardgrass mixed-cultures. The CR values showed that one PI312777 plant was more competitive than 2 barnyardgrass plants. The allelopathic effects of PI312777 were much more intense than the resource competition in rice/barnyardgrass mixed cultures. The reverse was true for Lemont. These results demonstrate that the allelopathic effect of PI312777 was predominant in rice/barnyardgrass mixed-cultures. The most significant result of our study is the discovery of an experimental design, target-neighbor mixed-culture in combination with competition indices, can successfully separate allelopathic effects from competition

    HIV-1 Nef Targets MHC-I and CD4 for Degradation Via a Final Common β-COP–Dependent Pathway in T Cells

    Get PDF
    To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7+ vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, β-COP. Moreover, we demonstrate that Nef contains two separable β-COP binding sites. One site, an arginine (RXR) motif in the N-terminal α helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef

    Africa and the global carbon cycle

    Get PDF
    The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO(2). Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century

    A second generation human haplotype map of over 3.1 million SNPs

    Full text link
    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r(2) of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r(2) of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62863/1/nature06258.pd
    corecore