578 research outputs found

    Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders

    Full text link
    Generative models that learn disentangled representations for different factors of variation in an image can be very useful for targeted data augmentation. By sampling from the disentangled latent subspace of interest, we can efficiently generate new data necessary for a particular task. Learning disentangled representations is a challenging problem, especially when certain factors of variation are difficult to label. In this paper, we introduce a novel architecture that disentangles the latent space into two complementary subspaces by using only weak supervision in form of pairwise similarity labels. Inspired by the recent success of cycle-consistent adversarial architectures, we use cycle-consistency in a variational auto-encoder framework. Our non-adversarial approach is in contrast with the recent works that combine adversarial training with auto-encoders to disentangle representations. We show compelling results of disentangled latent subspaces on three datasets and compare with recent works that leverage adversarial training

    Eye-Tracking Causality

    Get PDF
    How do people make causal judgments? What role, if any, does counterfactual simulation play? Counterfactual theories of causal judgments predict that people compare what actually happened with what would have happened if the candidate cause had been absent. Process theories predict that people focus only on what actually happened, to assess the mechanism linking candidate cause and outcome. We tracked participants' eye movements while they judged whether one billiard ball caused another one to go through a gate or prevented it from going through. Both participants' looking patterns and their judgments demonstrated that counterfactual simulation played a critical role. Participants simulated where the target ball would have gone if the candidate cause had been removed from the scene. The more certain participants were that the outcome would have been different, the stronger the causal judgments. These results provide the first direct evidence for spontaneous counterfactual simulation in an important domain of high-level cognition

    Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise

    Full text link
    This study presents the results of a series of simulation experiments that evaluate and compare four different manifold alignment methods under the influence of noise. The data was created by simulating the dynamics of two slightly different double pendulums in three-dimensional space. The method of semi-supervised feature-level manifold alignment using global distance resulted in the most convincing visualisations. However, the semi-supervised feature-level local alignment methods resulted in smaller alignment errors. These local alignment methods were also more robust to noise and faster than the other methods.Comment: The final version will appear in ICONIP 2018. A DOI identifier to the final version will be added to the preprint, as soon as it is availabl

    Superpixel Convolutional Networks using Bilateral Inceptions

    Full text link
    In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new 'bilateral inception' module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception module between the last CNN (1x1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.Comment: European Conference on Computer Vision (ECCV), 201

    A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment

    Full text link
    Face analysis techniques have become a crucial component of human-machine interaction in the fields of assistive and humanoid robotics. However, the variations in head-pose that arise naturally in these environments are still a great challenge. In this paper, we present a real-time capable 3D face modelling framework for 2D in-the-wild images that is applicable for robotics. The fitting of the 3D Morphable Model is based exclusively on automatically detected landmarks. After fitting, the face can be corrected in pose and transformed back to a frontal 2D representation that is more suitable for face recognition. We conduct face recognition experiments with non-frontal images from the MUCT database and uncontrolled, in the wild images from the PaSC database, the most challenging face recognition database to date, showing an improved performance. Finally, we present our SCITOS G5 robot system, which incorporates our framework as a means of image pre-processing for face analysis

    Generative Invertible Networks (GIN): Pathophysiology-Interpretable Feature Mapping and Virtual Patient Generation

    Full text link
    Machine learning methods play increasingly important roles in pre-procedural planning for complex surgeries and interventions. Very often, however, researchers find the historical records of emerging surgical techniques, such as the transcatheter aortic valve replacement (TAVR), are highly scarce in quantity. In this paper, we address this challenge by proposing novel generative invertible networks (GIN) to select features and generate high-quality virtual patients that may potentially serve as an additional data source for machine learning. Combining a convolutional neural network (CNN) and generative adversarial networks (GAN), GIN discovers the pathophysiologic meaning of the feature space. Moreover, a test of predicting the surgical outcome directly using the selected features results in a high accuracy of 81.55%, which suggests little pathophysiologic information has been lost while conducting the feature selection. This demonstrates GIN can generate virtual patients not only visually authentic but also pathophysiologically interpretable

    Raising argument strength using negative evidence: A constraint on models of induction

    Get PDF
    Both intuitively, and according to similarity-based theories of induction, relevant evidence raises argument strength when it is positive and lowers it when it is negative. In three experiments, we tested the hypothesis that argument strength can actually increase when negative evidence is introduced. Two kinds of argument were compared through forced choice or sequential evaluation: single positive arguments (e.g., “Shostakovich’s music causes alpha waves in the brain; therefore, Bach’s music causes alpha waves in the brain”) and double mixed arguments (e.g., “Shostakovich’s music causes alpha waves in the brain, X’s music DOES NOT; therefore, Bach’s music causes alpha waves in the brain”). Negative evidence in the second premise lowered credence when it applied to an item X from the same subcategory (e.g., Haydn) and raised it when it applied to a different subcategory (e.g., AC/DC). The results constitute a new constraint on models of induction

    Validation of nonlinear PCA

    Full text link
    Linear principal component analysis (PCA) can be extended to a nonlinear PCA by using artificial neural networks. But the benefit of curved components requires a careful control of the model complexity. Moreover, standard techniques for model selection, including cross-validation and more generally the use of an independent test set, fail when applied to nonlinear PCA because of its inherent unsupervised characteristics. This paper presents a new approach for validating the complexity of nonlinear PCA models by using the error in missing data estimation as a criterion for model selection. It is motivated by the idea that only the model of optimal complexity is able to predict missing values with the highest accuracy. While standard test set validation usually favours over-fitted nonlinear PCA models, the proposed model validation approach correctly selects the optimal model complexity.Comment: 12 pages, 5 figure

    Non-Redundant Spectral Dimensionality Reduction

    Full text link
    Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the "repeated Eigen-directions" phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data manifold. This leads to redundant and inefficient representations that do not reveal the true intrinsic dimensionality of the data. In this paper, we propose a general method for avoiding redundancy in spectral algorithms. Our approach relies on replacing the orthogonality constraints underlying those methods by unpredictability constraints. Specifically, we require that each embedding coordinate be unpredictable (in the statistical sense) from all previous ones. We prove that these constraints necessarily prevent redundancy, and provide a simple technique to incorporate them into existing methods. As we illustrate on challenging high-dimensional scenarios, our approach produces significantly more informative and compact representations, which improve visualization and classification tasks
    corecore