578 research outputs found
Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders
Generative models that learn disentangled representations for different
factors of variation in an image can be very useful for targeted data
augmentation. By sampling from the disentangled latent subspace of interest, we
can efficiently generate new data necessary for a particular task. Learning
disentangled representations is a challenging problem, especially when certain
factors of variation are difficult to label. In this paper, we introduce a
novel architecture that disentangles the latent space into two complementary
subspaces by using only weak supervision in form of pairwise similarity labels.
Inspired by the recent success of cycle-consistent adversarial architectures,
we use cycle-consistency in a variational auto-encoder framework. Our
non-adversarial approach is in contrast with the recent works that combine
adversarial training with auto-encoders to disentangle representations. We show
compelling results of disentangled latent subspaces on three datasets and
compare with recent works that leverage adversarial training
Eye-Tracking Causality
How do people make causal judgments? What role, if any, does counterfactual simulation play? Counterfactual theories of causal judgments predict that people compare what actually happened with what would have happened if the candidate cause had been absent. Process theories predict that people focus only on what actually happened, to assess the mechanism linking candidate cause and outcome. We tracked participants' eye movements while they judged whether one billiard ball caused another one to go through a gate or prevented it from going through. Both participants' looking patterns and their judgments demonstrated that counterfactual simulation played a critical role. Participants simulated where the target ball would have gone if the candidate cause had been removed from the scene. The more certain participants were that the outcome would have been different, the stronger the causal judgments. These results provide the first direct evidence for spontaneous counterfactual simulation in an important domain of high-level cognition
Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise
This study presents the results of a series of simulation experiments that
evaluate and compare four different manifold alignment methods under the
influence of noise. The data was created by simulating the dynamics of two
slightly different double pendulums in three-dimensional space. The method of
semi-supervised feature-level manifold alignment using global distance resulted
in the most convincing visualisations. However, the semi-supervised
feature-level local alignment methods resulted in smaller alignment errors.
These local alignment methods were also more robust to noise and faster than
the other methods.Comment: The final version will appear in ICONIP 2018. A DOI identifier to the
final version will be added to the preprint, as soon as it is availabl
Superpixel Convolutional Networks using Bilateral Inceptions
In this paper we propose a CNN architecture for semantic image segmentation.
We introduce a new 'bilateral inception' module that can be inserted in
existing CNN architectures and performs bilateral filtering, at multiple
feature-scales, between superpixels in an image. The feature spaces for
bilateral filtering and other parameters of the module are learned end-to-end
using standard backpropagation techniques. The bilateral inception module
addresses two issues that arise with general CNN segmentation architectures.
First, this module propagates information between (super) pixels while
respecting image edges, thus using the structured information of the problem
for improved results. Second, the layer recovers a full resolution segmentation
result from the lower resolution solution of a CNN. In the experiments, we
modify several existing CNN architectures by inserting our inception module
between the last CNN (1x1 convolution) layers. Empirical results on three
different datasets show reliable improvements not only in comparison to the
baseline networks, but also in comparison to several dense-pixel prediction
techniques such as CRFs, while being competitive in time.Comment: European Conference on Computer Vision (ECCV), 201
A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment
Face analysis techniques have become a crucial component of human-machine
interaction in the fields of assistive and humanoid robotics. However, the
variations in head-pose that arise naturally in these environments are still a
great challenge. In this paper, we present a real-time capable 3D face
modelling framework for 2D in-the-wild images that is applicable for robotics.
The fitting of the 3D Morphable Model is based exclusively on automatically
detected landmarks. After fitting, the face can be corrected in pose and
transformed back to a frontal 2D representation that is more suitable for face
recognition. We conduct face recognition experiments with non-frontal images
from the MUCT database and uncontrolled, in the wild images from the PaSC
database, the most challenging face recognition database to date, showing an
improved performance. Finally, we present our SCITOS G5 robot system, which
incorporates our framework as a means of image pre-processing for face
analysis
Generative Invertible Networks (GIN): Pathophysiology-Interpretable Feature Mapping and Virtual Patient Generation
Machine learning methods play increasingly important roles in pre-procedural
planning for complex surgeries and interventions. Very often, however,
researchers find the historical records of emerging surgical techniques, such
as the transcatheter aortic valve replacement (TAVR), are highly scarce in
quantity. In this paper, we address this challenge by proposing novel
generative invertible networks (GIN) to select features and generate
high-quality virtual patients that may potentially serve as an additional data
source for machine learning. Combining a convolutional neural network (CNN) and
generative adversarial networks (GAN), GIN discovers the pathophysiologic
meaning of the feature space. Moreover, a test of predicting the surgical
outcome directly using the selected features results in a high accuracy of
81.55%, which suggests little pathophysiologic information has been lost while
conducting the feature selection. This demonstrates GIN can generate virtual
patients not only visually authentic but also pathophysiologically
interpretable
Raising argument strength using negative evidence: A constraint on models of induction
Both intuitively, and according to similarity-based theories of induction, relevant evidence raises argument strength when it is positive and lowers it when it is negative. In three experiments, we tested the hypothesis that argument strength can actually increase when negative evidence is introduced. Two kinds of argument were compared through forced choice or sequential evaluation: single positive arguments (e.g., “Shostakovich’s music causes alpha waves in the brain; therefore, Bach’s music causes alpha waves in the brain”) and double mixed arguments (e.g., “Shostakovich’s music causes alpha waves in the brain, X’s music DOES NOT; therefore, Bach’s music causes alpha waves in the brain”). Negative evidence in the second premise lowered credence when it applied to an item X from the same subcategory (e.g., Haydn) and raised it when it applied to a different subcategory (e.g., AC/DC). The results constitute a new constraint on models of induction
Validation of nonlinear PCA
Linear principal component analysis (PCA) can be extended to a nonlinear PCA
by using artificial neural networks. But the benefit of curved components
requires a careful control of the model complexity. Moreover, standard
techniques for model selection, including cross-validation and more generally
the use of an independent test set, fail when applied to nonlinear PCA because
of its inherent unsupervised characteristics. This paper presents a new
approach for validating the complexity of nonlinear PCA models by using the
error in missing data estimation as a criterion for model selection. It is
motivated by the idea that only the model of optimal complexity is able to
predict missing values with the highest accuracy. While standard test set
validation usually favours over-fitted nonlinear PCA models, the proposed model
validation approach correctly selects the optimal model complexity.Comment: 12 pages, 5 figure
Non-Redundant Spectral Dimensionality Reduction
Spectral dimensionality reduction algorithms are widely used in numerous
domains, including for recognition, segmentation, tracking and visualization.
However, despite their popularity, these algorithms suffer from a major
limitation known as the "repeated Eigen-directions" phenomenon. That is, many
of the embedding coordinates they produce typically capture the same direction
along the data manifold. This leads to redundant and inefficient
representations that do not reveal the true intrinsic dimensionality of the
data. In this paper, we propose a general method for avoiding redundancy in
spectral algorithms. Our approach relies on replacing the orthogonality
constraints underlying those methods by unpredictability constraints.
Specifically, we require that each embedding coordinate be unpredictable (in
the statistical sense) from all previous ones. We prove that these constraints
necessarily prevent redundancy, and provide a simple technique to incorporate
them into existing methods. As we illustrate on challenging high-dimensional
scenarios, our approach produces significantly more informative and compact
representations, which improve visualization and classification tasks
Recommended from our members
Emergence of Sensory Representations Using Prediction in Partially Observable Environments
n order to explore and act autonomously in an environment,an agent can learn from the sensorimotor information that is capturedwhile acting. By extracting the regularities in this sensorimotor stream,it can build a model of the world, which in turn can be used as a basis foraction and exploration. It requires the acquisition of compact representa-tions from possibly high dimensional raw observations. In this paper, wepropose a model which integrates sensorimotor information over time,and project it in a sensory representation. It is trained by preformingsensorimotor prediction. We emphasize on a simple example the role ofmotor and memory for learning sensory representations
- …
