9 research outputs found

    Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.

    Get PDF
    Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered

    A resting box for outdoor sampling of adult Anopheles arabiensis in rice irrigation schemes of lower Moshi, northern Tanzania

    Get PDF
    Malaria vector sampling is the best method for understanding the vector dynamics and infectivity; thus, disease transmission seasonality can be established. There is a need to protecting humans involved in the sampling of disease vectors during surveillance or in control programmes. In this study, human landing catch, two cow odour baited resting boxes and an unbaited resting box were evaluated as vector sampling tools in an area with a high proportion of Anopheles arabiensis, as the major malaria vector. Three resting boxes were evaluated against human landing catch. Two were baited with cow odour, while the third was unbaited. The inner parts of the boxes were covered with black cloth materials. Experiments were arranged in latin-square design. Boxes were set in the evening and left undisturbed; mosquitoes were collected at 06:00 am the next morning, while human landing catch was done overnight. A total of 9,558 An. arabiensis mosquitoes were collected. 17.5% (N = 1668) were collected in resting box baited with cow body odour, 42.5% (N = 4060) in resting box baited with cow urine, 15.1% (N = 1444) in unbaited resting box and 24.9% (N = 2386) were collected by human landing catch technique. In analysis, the house positions had no effect on the density of mosquitoes caught (DF = 3, F = 0.753, P = 0.387); the sampling technique had significant impact on the caught mosquitoes densities (DF = 3, F 37. 944, P < 0.001). Odour-baited resting boxes have shown the possibility of replacing the existing traditional method (human landing catch) for sampling malaria vectors in areas with a high proportion of An. arabiensis as malaria vectors. Further evaluations of fermented urine and longevity of the urine odour still need to be investigated

    Reduced paediatric hospitalizations for malaria and febrile illness patterns following implementation of community-based malaria control programme in rural Rwanda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria control is currently receiving significant international commitment. As part of this commitment, Rwanda has undertaken a two-pronged approach to combating malaria via mass distribution of long-lasting insecticidal-treated nets and distribution of antimalarial medications by community health workers. This study attempted to measure the impact of these interventions on paediatric hospitalizations for malaria and on laboratory markers of disease severity.</p> <p>Methods</p> <p>A retrospective analysis of hospital records pre- and post-community-based malaria control interventions at a district hospital in rural Rwanda was performed. The interventions took place in August 2006 in the region served by the hospital and consisted of mass insecticide treated net distribution and community health workers antimalarial medication disbursement. The study periods consisted of the December–February high transmission seasons pre- and post-rollout. The record review examined a total of 551 paediatric admissions to identify 1) laboratory-confirmed malaria, defined by thick smear examination, 2) suspected malaria, defined as fever and symptoms consistent with malaria in the absence of an alternate cause, and 3) all-cause admissions. To define the impact of the intervention on clinical markers of malaria disease, trends in admission peripheral parasitaemia and haemoglobin were analyzed. To define accuracy of clinical diagnoses, trends in proportions of malaria admissions which were microscopy-confirmed before and after the intervention were examined. Finally, to assess overall management of febrile illnesses antibiotic use was described.</p> <p>Results</p> <p>Of the 551 total admissions, 268 (48.6%) and 437 (79.3%) were attributable to laboratory-confirmed and suspected malaria, respectively. The absolute number of admissions due to suspected malaria was smaller during the post-intervention period (N = 150) relative to the pre-intervention period (N = 287), in spite of an increase in the absolute number of hospitalizations due to other causes during the post-intervention period. The percentage of suspected malaria admissions that were laboratory-confirmed was greater during the pre-intervention period (80.4%) relative to the post-intervention period (48.1%, prevalence ratio [PR]: 1.67; 95% CI: 1.39 – 2.02; chi-squared p-value < 0.0001). Among children admitted with laboratory-confirmed malaria, the risk of high parasitaemia was higher during the pre-intervention period relative to the post-intervention period (age-adjusted PR: 1.62; 95% CI: 1.11 – 2.38; chi-squared p-value = 0.004), and the risk of severe anaemia was more than twofold greater during the pre-intervention period (age-adjusted PR: 2.47; 95% CI: 0.84 – 7.24; chi-squared p-value = 0.08). Antibiotic use was common, with 70.7% of all children with clinical malaria and 86.4% of children with slide-negative malaria receiving antibacterial therapy.</p> <p>Conclusion</p> <p>This study suggests that both admissions for malaria and laboratory markers of clinical disease among children may be rapidly reduced following community-based malaria control efforts. Additionally, this study highlights the problem of over-diagnosis and over-treatment of malaria in malaria-endemic regions, especially as malaria prevalence falls. More accurate diagnosis and management of febrile illnesses is critically needed both now and as fever aetiologies change with further reductions in malaria.</p

    Reduction in the proportion of fevers associated with Plasmodium falciparum parasitaemia in Africa: a systematic review

    Get PDF
    BACKGROUND: Malaria is almost invariably ranked as the leading cause of morbidity and mortality in Africa. There is growing evidence of a decline in malaria transmission, morbidity and mortality over the last decades, especially so in East Africa. However, there is still doubt whether this decline is reflected in a reduction of the proportion of malaria among fevers. The objective of this systematic review was to estimate the change in the Proportion of Fevers associated with Plasmodium falciparum parasitaemia (PFPf) over the past 20 years in sub-Saharan Africa. METHODS: Search strategy. In December 2009, publications from the National Library of Medicine database were searched using the combination of 16 MeSH terms.Selection criteria. Inclusion criteria: studies 1) conducted in sub-Saharan Africa, 2) patients presenting with a syndrome of 'presumptive malaria', 3) numerators (number of parasitologically confirmed cases) and denominators (total number of presumptive malaria cases) available, 4) good quality microscopy.Data collection and analysis. The following variables were extracted: parasite presence/absence, total number of patients, age group, year, season, country and setting, clinical inclusion criteria. To assess the dynamic of PFPf over time, the median PFPf was compared between studies published in the years ≀2000 and &gt; 2000. RESULTS: 39 studies conducted between 1986 and 2007 in 16 different African countries were included in the final analysis. When comparing data up to year 2000 (24 studies) with those afterwards (15 studies), there was a clear reduction in the median PFPf from 44% (IQR 31-58%; range 7-81%) to 22% (IQR 13-33%; range 2-77%). This dramatic decline is likely to reflect a true change since stratified analyses including explanatory variables were performed and median PFPfs were always lower after 2000 compared to before. CONCLUSIONS: There was a considerable reduction of the proportion of malaria among fevers over time in Africa. This decline provides evidence for the policy change from presumptive anti-malarial treatment of all children with fever to laboratory diagnosis and treatment upon result. This should insure appropriate care of non-malaria fevers and rationale use of anti-malarials

    Surface-expressed enolases of Plasmodium and other pathogens

    No full text
    Enolase is the eighth enzyme in the glycolytic pathway, a reaction that generates ATP from phosphoenol pyruvate in cytosolic compartments. Enolase is essential, especially for organisms devoid of the Krebs cycle that depend solely on glycolysis for energy. Interestingly, enolase appears to serve a separate function in some organisms, in that it is also exported to the cell surface via a poorly understood mechanism. In these organisms, surface enolase assists in the invasion of their host cells by binding plasminogen, an abundant plasma protease precursor. Binding is mediated by the interaction between a lysine motif of enolase with Kringle domains of plasminogen. The bound plasminogen is then cleaved by specific proteases to generate active plasmin. Plasmin is a potent serine protease that is thought to function in the degradation of the extracellular matrix surrounding the targeted host cell, thereby facilitating pathogen invasion. Recent work revealed that the malaria parasite Plasmodium also expresses surface enolase, and that this feature may be essential for completion of its life cycle. The therapeutic potential of targeting surface enolases of pathogens is discussed
    corecore