1,222 research outputs found

    Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing

    Get PDF
    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics

    Reducing appointment lead-time in an outpatient department of gynecology and obstetrics through discrete-event simulation: A case study

    Get PDF
    Appointment lead-time is a critical variable in outpatient clinic services. In Gynecology and Obstetrics departments, longer appointment lead times are associated with lower patient satisfaction, the use of more complex healthcare services, development of long-term and severe complications and the increase of fetal, infant and maternal mortality rates. This paper aims to define and evaluate improvement alternatives through the use of Discrete-event simulation (DES). First, input data analysis is performed. Second, the simulation model is created; then, performance metrics are calculated and analyzed. Finally, improvement scenarios are designed and assessed. A case study of a mixed-patient type environment (Perinatology and Gynecobstetrics) in an outpatient department has been explored to verify the effectiveness of the proposed approach. Statistical analysis evidence that appointment lead times could be significantly reduced in both Perinatology and Gynecobstetrics appointments based on the proposed approaches in this paper

    Mechanosensitive Enteric Neurons in the Myenteric Plexus of the Mouse Intestine

    Get PDF
    BACKGROUND: Within the gut the autonomous enteric nervous system (ENS) is able to sense mechanical stimuli and to trigger gut reflex behaviour. We previously proposed a novel sensory circuit in the ENS which consists of multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the guinea pig. The aim of this study was to validate this concept by studying its applicability to other species or gut regions. METHODOLOGY/PRINCIPAL FINDINGS: We deformed myenteric ganglia in the mouse small and large intestine and recorded spike discharge using voltage sensitive dye imaging. We also analysed expression of markers hitherto proposed to label mouse sensory myenteric neurons in the ileum (NF145kD) or colon (calretinin). RAMEN constituted 22% and 15% of myenteric neurons per ganglion in the ileum and colon, respectively. They encoded dynamic rather than sustained deformation. In the colon, 7% of mechanosensitive neurons fired throughout the sustained deformation, a behaviour typical for slowly adapting echanosensitive neurons (SAMEN). RAMEN and SAMEN responded directly to mechanical deformation as their response remained unchanged after synaptic blockade in low Ca(++)/high Mg(++). Activity levels of RAMEN increased with the degree of ganglion deformation. Recruitment of more RAMEN with stronger stimuli may suggest low and high threshold RAMEN. The majority of RAMEN were cholinergic but most lacked expression of NF145kD or calretinin. CONCLUSIONS/SIGNIFICANCE: We showed for the first time that fundamental properties of mechanosensitive enteric neurons, such as firing pattern, encoding of dynamic deformation, cholinergic phenotype and their proportion, are conserved across species and regions. We conclude that RAMEN are important for mechanotransduction in the ENS. They directly encode dynamic changes in force as their firing frequency is proportional to the degree of deformation of the ganglion they reside in. The additional existence of SAMEN in the colon is likely an adaptation to colonic motor patterns which consist of phasic and tonic contractions

    Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study

    Get PDF
    Bestrophins are a recently discovered family of Cl− channels, for which no structural information is available. Some family members are activated by increased intracellular Ca2+ concentration. Bestrophins feature a well conserved Asp-rich tract in their COOH terminus (Asp-rich domain), which is homologous to Ca2+-binding motifs in human thrombospondins and in human big-conductance Ca2+- and voltage-gated K+ channels (BKCa). Consequently, the Asp-rich domain is also a candidate for Ca2+ binding in bestrophins. Based on these considerations, we constructed homology models of human bestrophin-1 (Best1) Asp-rich domain using human thrombospondin-1 X-ray structure as a template. Molecular dynamics simulations were used to identify Asp and Glu residues binding Ca2+ and to predict the effects of their mutations to alanine. We then proceeded to test selected mutations in the Asp-rich domain of the highly homologous mouse bestrophin-2. The mutants expressed in HEK-293 cells were investigated by electrophysiological experiments using the whole-cell voltage-clamp technique. Based on our molecular modeling results, we predicted that Asp-rich domain has two defined binding sites and that D301A and D304A mutations may impact the binding of the metal ions. The experiments confirmed that these mutations do actually affect the function of the protein causing a large decrease in the Ca2+-activated Cl− current, fully consistent with our predictions. In addition, other studied mutations (E306A, D312A) did not decrease Ca2+-activated Cl− current in agreement with modeling results

    Functional consequences of Kir2.1/Kir2.2 subunit heteromerization

    Get PDF
    Kir2 subunits form channels that underlie classical strongly inwardly rectifying potassium currents. While homomeric Kir2 channels display a number of distinct and physiologically important properties, the functional properties of heteromeric Kir2 assemblies, as well as the stoichiometries and the arrangements of Kir2 subunits in native channels, remain largely unknown. Therefore, we have implemented a concatemeric approach, whereby all four cloned Kir2 subunits were linked in tandem, in order to study the effects of Kir2.1 and Kir2.2 heteromerization on properties of the resulting channels. Kir2.2 subunits contributed stronger to single-channel conductance than Kir2.1 subunits, and channels containing two or more Kir2.2 subunits displayed conductances indistinguishable from that of a Kir2.2 homomeric channel. In contrast, single-channel kinetics was a more discriminating property. The open times were significantly shorter in Kir2.2 channels compared with Kir2.1 channels and decreased nearly proportionally to the number of Kir2.2 subunits in the heteromeric channel. Similarly, the sensitivity to block by barium also depended on the proportions of Kir2.1 to Kir2.2 subunits. Overall, the results showed that Kir2.1 and Kir2.2 subunits exert neither a dominant nor an anomalous effect on any of the properties of heteromeric channels. The data highlight opportunities and challenges of using differential properties of Kir2 channels in deciphering the subunit composition of native inwardly rectifying potassium currents

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    Regulation of Bestrophins by Ca2+: A Theoretical and Experimental Study

    Get PDF
    Bestrophins are a recently discovered family of Cl− channels, for which no structural information is available. Some family members are activated by increased intracellular Ca2+ concentration. Bestrophins feature a well conserved Asp-rich tract in their COOH terminus (Asp-rich domain), which is homologous to Ca2+-binding motifs in human thrombospondins and in human big-conductance Ca2+- and voltage-gated K+ channels (BKCa). Consequently, the Asp-rich domain is also a candidate for Ca2+ binding in bestrophins. Based on these considerations, we constructed homology models of human bestrophin-1 (Best1) Asp-rich domain using human thrombospondin-1 X-ray structure as a template. Molecular dynamics simulations were used to identify Asp and Glu residues binding Ca2+ and to predict the effects of their mutations to alanine. We then proceeded to test selected mutations in the Asp-rich domain of the highly homologous mouse bestrophin-2. The mutants expressed in HEK-293 cells were investigated by electrophysiological experiments using the whole-cell voltage-clamp technique. Based on our molecular modeling results, we predicted that Asp-rich domain has two defined binding sites and that D301A and D304A mutations may impact the binding of the metal ions. The experiments confirmed that these mutations do actually affect the function of the protein causing a large decrease in the Ca2+-activated Cl− current, fully consistent with our predictions. In addition, other studied mutations (E306A, D312A) did not decrease Ca2+-activated Cl− current in agreement with modeling results

    A Genome-Wide Meta-Analysis of Six Type 1 Diabetes Cohorts Identifies Multiple Associated Loci

    Get PDF
    Diabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.54 million SNPs in a combined cohort of 9,934 cases and 16,956 controls. Targeted follow-up of 53 SNPs in 1,120 affected trios uncovered three new loci associated with T1D that reached genome-wide significance. The most significantly associated SNP (rs539514, P = 5.66×10−11) resides in an intronic region of the LMO7 (LIM domain only 7) gene on 13q22. The second most significantly associated SNP (rs478222, P = 3.50×10−9) resides in an intronic region of the EFR3B (protein EFR3 homolog B) gene on 2p23; however, the region of linkage disequilibrium is approximately 800 kb and harbors additional multiple genes, including NCOA1, C2orf79, CENPO, ADCY3, DNAJC27, POMC, and DNMT3A. The third most significantly associated SNP (rs924043, P = 8.06×10−9) lies in an intergenic region on 6q27, where the region of association is approximately 900 kb and harbors multiple genes including WDR27, C6orf120, PHF10, TCTE3, C6orf208, LOC154449, DLL1, FAM120B, PSMB1, TBP, and PCD2. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D

    Uncovering the Dynamics of Cardiac Systems Using Stochastic Pacing and Frequency Domain Analyses

    Get PDF
    Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell
    • …
    corecore