99 research outputs found

    Health profiles of 996 melanoma survivors: the M. D. Anderson experience

    Get PDF
    BACKGROUND: The incidence and survival of melanoma are increasing, but little is known about its long-term health effects in adult survivors. METHODS: A health survey was available from 996 melanoma survivors (577 treated with surgery alone, and 391 with combined treatments). Their medical/physiologic and psychosocial responses were analyzed and compared with those of the survivors from other cancers. RESULTS: The melanoma survivors were 44.8 ± 12.8 years of age at diagnosis (significantly younger than the survivors of other cancers) and 63.7 ± 12.8 years at survey. Melanoma survivors were less likely to report that cancer had affected their health than survivors of other cancers (15.8% vs. 34.9%). The 577 individuals treated with surgery alone reported arthritis/osteoporosis, cataracts, and heart problems most frequently (less often than survivors of other cancers). The 391 individuals who had undergone combined treatments reported circulation problems and kidney problems generally as often as survivors of other cancers. Health problems were not associated with number of decades since diagnosis but with age at diagnosis, treatment modality, and family relationships. CONCLUSION: We present information from a large cohort of long-term survivors of melanoma. As a group, they were less likely to report that cancer had affected their overall health than survivors of other cancers; a number of disease related and psychosocial factors appear to influence their health profiles

    The present-day number of tectonic plates

    Get PDF
    The number of tectonic plates on Earth described in the literature has expanded greatly since the start of the plate tectonic era, when only about a dozen plates were considered in global models of present-day plate motions. With new techniques of more accurate earthquake epicenter locations, modern ways of measuring ocean bathymetry using swath mapping, and the use of space based geodetic techniques, there has been a huge growth in the number of plates thought to exist. The study by Bird (2003) proposed 52 plates, many of which were delineated on the basis of earthquake locations. Because of the pattern of areas of these plates, he suggested that there should be more small plates than he could identify. In this paper, I gather together publications that have proposed a total of 107 new plates, giving 159 plates in all. The largest plate (Pacific) is about 20 % of the Earth's area or 104 Mm (super 2) , and the smallest of which (Plate number 5 from Hammond et al. 2011) is only 273 km (super 2) in area. Sorting the plates by size allows us to investigate how size varies as a function of order. There are several changes of slope in the plots of plate number organized by size against plate size order which are discussed. The sizes of the largest seven plates is constrained by the area of the Earth. A middle set of 73 plates down to an area of 97,563 km (super 2) (the Danakil plate at number 80, is the plate of median size) follows a fairly regular pattern of plate size as a function of plate number. For smaller plates, there is a break in the slope of the plate size/plate number plot and the next 32 plates follow a pattern of plate size proposed by the models of Koehn et al. (2008) down to an area of 11,638 km (super 2) (West Mojave plate # 112). Smaller plates do not follow any regular pattern of area as a function of plate number, probably because we have not sampled enough of these very small plates to reveal any clear pattern. Copyright 2016 The Author(s) and Harrison

    Neural Reuse and the Nature of Evolutionary Constraints

    Get PDF
    In humans, the reuse of neural structure is particularly pronounced at short, task-relevant timescales. Here, an argument is developed for the claim that facts about neural reuse at task-relevant timescales conflict with at least one characterization of neural reuse at an evolutionary timescale. It is then argued that, in order to resolve the conflict, we must conceptualize evolutionary-scale reuse more abstractly than has been generally recognized. The final section of the paper explores the relationship between neural reuse and human nature. It is argued that neural reuse is not well-described as a process that constrains our present cognitive capacities. Instead, it liberates those capacities from the ancestral tethers that might otherwise have constrained them

    siRNAs: Potential therapeutic agents against Hepatitis C Virus

    Get PDF
    Hepatitis C virus is a major cause of chronic liver diseases which can lead to permanent liver damage, hepatocellular carcinoma and death. The presently available treatment with interferon plus ribavirin, has limited benefits due to adverse side effects such as anemia, depression and "flu-like" symptoms. Needless to mention, the effectiveness of interferon therapy is predominantly, if not exclusively, limited to virus type 3a and 3b whereas in Europe and North America the majority of viral type is 1a and 2a. Due to the limited efficiency of current therapy, RNA interference (RNAi) a novel regulatory and powerful silencing approach for molecular therapeutics through a sequence-specific RNA degradation process represents an alternative option. Several reports have indicated the efficiency and specificity of synthetic and vector based siRNAs inhibiting HCV replication. In the present review, we focused that combination of siRNAs against virus and host genes will be a better option to treat HC

    Quantifying bioirrigation using ecological parameters: a stochastic approach†

    Get PDF
    Irrigation by benthic macrofauna has a major influence on the biogeochemistry and microbial community structure of sediments. Existing quantitative models of bioirrigation rely primarily on chemical, rather than ecological, information and the depth-dependence of bioirrigation intensity is either imposed or constrained through a data fitting procedure. In this study, stochastic simulations of 3D burrow networks are used to calculate mean densities, volumes and wall surface areas of burrows, as well as their variabilities, as a function of sediment depth. Burrow networks of the following model organisms are considered: the polychaete worms Nereis diversicolor and Schizocardium sp., the shrimp Callianassa subterranea, the echiuran worm Maxmuelleria lankesteri, the fiddler crabs Uca minax, U. pugnax and U. pugilator, and the mud crabs Sesarma reticulatum and Eurytium limosum. Consortia of these model organisms are then used to predict burrow networks in a shallow water carbonate sediment at Dry Tortugas, FL, and in two intertidal saltmarsh sites at Sapelo Island, GA. Solute-specific nonlocal bioirrigation coefficients are calculated from the depth-dependent burrow surface areas and the radial diffusive length scale around the burrows. Bioirrigation coefficients for sulfate obtained from network simulations, with the diffusive length scales constrained by sulfate reduction rate profiles, agree with independent estimates of bioirrigation coefficients based on pore water chemistry. Bioirrigation coefficients for O(2 )derived from the stochastic model, with the diffusion length scales constrained by O(2 )microprofiles measured at the sediment/water interface, are larger than irrigation coefficients based on vertical pore water chemical profiles. This reflects, in part, the rapid attenuation with depth of the O(2 )concentration within the burrows, which reduces the driving force for chemical transfer across the burrow walls. Correction for the depletion of O(2 )in the burrows results in closer agreement between stochastically-derived and chemically-derived irrigation coefficient profiles

    Thyroid nodules and differentiated thyroid cancer: update on the Brazilian consensus

    Full text link
    corecore