8,778 research outputs found

    High sensitivity organic temperature sensor

    Get PDF
    Posterpostprin

    B-H relations of magnetorheological fluid under 2-D rotating magnetic field excitation

    Full text link
    This paper presents the investigation of the B-H relations of a magnetorheological (MR) fluid under one-dimensional (1-D) alternating and two-dimensional (2-D) rotating magnetic field excitations where B is magnetic flux density and H is magnetic field strength. The measurement is carried out by using a single sheet tester with an MR fluid sample. The measurement principle and structure of the testing system are described. The calibration of the B and H sensing coils are also reported. The relations between B and H on the MR fluid sample under 2-D rotating magnetic field excitations have been measured and compared with the results under 1-D excitations showing that the B-H relations under 2-D excitations are significantly different from the 1-D case. These data would be useful for design and analysis of MR smart structures like MR dampers. © 2013 IEEE

    YourMOOC4all: a recommender system for MOOCs based on collaborative filtering implementing UDL

    Get PDF
    YourMOOC4all is a pilot research project to collect feedback requests regarding accessible design for Massive Open Online Courses (MOOCs). In this online application, a specific website offers the possibility for any learner to freely judge if a particular MOOC complies Universal Design for Learning (UDL) principles. User feedback is of great value for the future development of MOOC platforms and MOOC educational resources, as it will help to follow De-sign for All guidelines. YourMOOC4all is a recommender system which gathers valuable information directly from learners to improve aspects such as the quality, accessibility and usability of this online learning environment. The final objective of collecting user’s feedback is to advice MOOC providers about the missing means for meeting learner needs. This paper describes the pedagogical and technological background of YourMOOC4all and its use cases

    In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    Get PDF
    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.National Science Foundation (U.S.) (Materials Research Science and Engineering Center (MRSEC) Program, Award DMR-0819762)United States. Dept. of Energy (Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U. S. Department of Energy under contract no. DE-AC03-76SF00098)Lawrence Berkeley National LaboratoryUnited States. Dept. of Energy (Office of Basic Energy Sciences, Materials Sciences and Engineering

    A Parallel Elastic Haptic Thimble for Wide Bandwidth Cutaneous Feedback.

    Get PDF
    Design of wearable fingertip haptic devices is often a compromise between conflicting features: lightness and compactness, against rich and neat haptic feedback. On one side direct drive actuators (i.e. voice coils) provide a clean haptic feedback with high dynamics, with limited maximum output forces. On the other side mechanical transmissions with reduction can increase output force of micro sized motors, at the cost of slower and often noisy output signals. In this work we present a compact fingertip haptic device based on a parallel elastic mechanism: it merges the output of two differently designed actuators in a single, wide bandwidth haptic feedback. Each actuator is designed with a different role: one for rendering fast, high frequency force components, the other for rendering constant to low frequency components. In the work we present design and implementation of the device, followed by experimental characterization of its performance in terms of frequency response and rendering capabilities

    Validation of nonlinear PCA

    Full text link
    Linear principal component analysis (PCA) can be extended to a nonlinear PCA by using artificial neural networks. But the benefit of curved components requires a careful control of the model complexity. Moreover, standard techniques for model selection, including cross-validation and more generally the use of an independent test set, fail when applied to nonlinear PCA because of its inherent unsupervised characteristics. This paper presents a new approach for validating the complexity of nonlinear PCA models by using the error in missing data estimation as a criterion for model selection. It is motivated by the idea that only the model of optimal complexity is able to predict missing values with the highest accuracy. While standard test set validation usually favours over-fitted nonlinear PCA models, the proposed model validation approach correctly selects the optimal model complexity.Comment: 12 pages, 5 figure

    A role for cell sex in stem cell-mediated skeletal muscle regeneration: Female cells have higher muscle regeneration efficiency

    Get PDF
    We have shown that muscle-derived stem cells (MDSCs) transplanted into dystrophic (mdx) mice efficiently regenerate skeletal muscle. However, MDSC populations exhibit heterogeneity in marker profiles and variability in regeneration abilities. We show here that cell sex is a variable that considerably influences MDSCs' regeneration abilities. We found that the female MDSCs (F-MDSCs) regenerated skeletal muscle more efficiently. Despite using additional isolation techniques and cell cloning, we could not obtain a male subfraction with a regeneration capacity similar to that of their female counterparts. Rather than being directly hormonal or caused by host immune response, this difference in MDSCs' regeneration potential may arise from innate sex-related differences in the cells' stress responses. In comparison with F-MDSCs, male MDSCs have increased differentiation after exposure to oxidative stress induced by hydrogen peroxide, which may lead to in vivo donor cell depletion, and a proliferative advantage for F-MDSCs that eventually increases muscle regeneration. These findings should persuade researchers to report cell sex, which is a largely unexplored variable, and consider the implications of relying on cells of one sex. © The Rockefeller University Press

    Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes.

    Get PDF
    Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures

    Thermally Driven SOFC Degradation in 4D: Part II. Macroscale

    Get PDF
    An inability to withstand rapid thermal cycling remains a major challenge for solid oxide fuel cells (SOFCs). Delamination of the anode and electrolyte layers due to mismatch in the thermal expansion coefficients (TEC) is a significant source of degradation. The first part of these studies inspected the interactions at the microscale, while this work presents the second of the two-part study and investigates such degradation with a focus on the macroscale. During thermal cycling the cell walls contracted and the interface concaved. A critical transition is thought to be triggered by an upper limit on the thermal ramp-rate, which in this case relates to rates above 20°C · min− 1. Additionally, the interfacial contact was observed to reduce with each thermal cycle progressing linearly until the aforementioned critical point was reached, after which a significant reduction in the degradation rate was observed. Interfacial curvature may also be responsible for cracking within the anode layer due to the localized tensile strain experienced during the bending process. This two-part study presents the first extended 4D investigation into the effects of thermal cycling at sub-micron resolution using only lab-based instruments. These results present valuable insight into interfacial delamination and anode cracking important in both cell design and operation

    Analyzing the Mechanical Performance of Solid Oxide Fuel Cells at Interfacial Anode/Electrolyte Regions Using Sub-Micron Resolution 3D X-Ray Computed Tomography

    Get PDF
    An inability to withstand rapid thermal cycling remains a shortcoming of the solid oxide fuel cell, resulting in start-up and shut-down times being prohibitively long. This work utilizes sub-micron resolution 3D X-ray CT reconstructions of a particularly problematic region due to a difference in thermal expansion properties within SOFCs: the anode-electrolyte interface. By examining the effects of thermal shock in 3D, this work improves the understanding of the causes and effects of mechanical dynamics which are attributed to losses in electrochemical performance
    corecore