145 research outputs found

    Design of a graphical and interactive interface for facilitating access to drug contraindications, cautions for use, interactions and adverse effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug iatrogeny is important but could be decreased if contraindications, cautions for use, drug interactions and adverse effects of drugs described in drug monographs were taken into account. However, the physician's time is limited during consultations, and this information is often not consulted. We describe here the design of "Mister VCM", a graphical interface based on the VCM graphical language, facilitating access to drug monographs. We also provide an assessment of the usability of this interface.</p> <p>Methods</p> <p>The "Mister VCM" interface was designed by dividing the screen into two parts: a graphical interactive one including VCM icons and synthetizing drug properties, a textual one presenting on demand drug monograph excerpts. The interface was evaluated over 11 volunteer general practitioners, trained in the use of "Mister VCM". They were asked to answer clinical questions related to fictitious randomly generated drug monographs, using a textual interface or "Mister VCM". When answering the questions, correctness of the responses and response time were recorded.</p> <p>Results</p> <p>"Mister VCM" is an interactive interface that displays VCM icons organized around an anatomical diagram of the human body with additional mental, etiological and physiological areas. Textual excerpts of the drug monograph can be displayed by clicking on the VCM icons. The interface can explicitly represent information implicit in the drug monograph, such as the absence of a given contraindication. Physicians made fewer errors with "Mister VCM" than with text (factor of 1.7; <it>p </it>= 0.034) and responded to questions 2.2 times faster (<it>p </it>< 0.001). The time gain with "Mister VCM" was greater for long monographs and questions with implicit replies.</p> <p>Conclusion</p> <p>"Mister VCM" seems to be a promising interface for accessing drug monographs. Similar interfaces could be developed for other medical domains, such as electronic patient records.</p

    An iconic language for the graphical representation of medical concepts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many medication errors are encountered in drug prescriptions, which would not occur if practitioners could remember the drug properties. They can refer to drug monographs to find these properties, however drug monographs are long and tedious to read during consultation. We propose a two-step approach for facilitating access to drug monographs. The first step, presented here, is the design of a graphical language, called VCM.</p> <p>Methods</p> <p>The VCM graphical language was designed using a small number of graphical primitives and combinatory rules. VCM was evaluated over 11 volunteer general practitioners to assess if the language is easy to learn, to understand and to use. Evaluators were asked to register their VCM training time, to indicate the meaning of VCM icons and sentences, and to answer clinical questions related to randomly generated drug monograph-like documents, supplied in text or VCM format.</p> <p>Results</p> <p>VCM can represent the various signs, diseases, physiological states, life habits, drugs and tests described in drug monographs. Grammatical rules make it possible to generate many icons by combining a small number of primitives and reusing simple icons to build more complex ones. Icons can be organized into simple sentences to express drug recommendations. Evaluation showed that VCM was learnt in 2 to 7 hours, that physicians understood 89% of the tested VCM icons, and that they answered correctly to 94% of questions using VCM (versus 88% using text, <it>p </it>= 0.003) and 1.8 times faster (<it>p </it>< 0.001).</p> <p>Conclusion</p> <p>VCM can be learnt in a few hours and appears to be easy to read. It can now be used in a second step: the design of graphical interfaces facilitating access to drug monographs. It could also be used for broader applications, including the design of interfaces for consulting other types of medical document or medical data, or, very simply, to enrich medical texts.</p

    Applying unmixing to gene expression data for tumor phylogeny inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While in principle a seemingly infinite variety of combinations of mutations could result in tumor development, in practice it appears that most human cancers fall into a relatively small number of "sub-types," each characterized a roughly equivalent sequence of mutations by which it progresses in different patients. There is currently great interest in identifying the common sub-types and applying them to the development of diagnostics or therapeutics. Phylogenetic methods have shown great promise for inferring common patterns of tumor progression, but suffer from limits of the technologies available for assaying differences between and within tumors. One approach to tumor phylogenetics uses differences between single cells within tumors, gaining valuable information about intra-tumor heterogeneity but allowing only a few markers per cell. An alternative approach uses tissue-wide measures of whole tumors to provide a detailed picture of averaged tumor state but at the cost of losing information about intra-tumor heterogeneity.</p> <p>Results</p> <p>The present work applies "unmixing" methods, which separate complex data sets into combinations of simpler components, to attempt to gain advantages of both tissue-wide and single-cell approaches to cancer phylogenetics. We develop an unmixing method to infer recurring cell states from microarray measurements of tumor populations and use the inferred mixtures of states in individual tumors to identify possible evolutionary relationships among tumor cells. Validation on simulated data shows the method can accurately separate small numbers of cell states and infer phylogenetic relationships among them. Application to a lung cancer dataset shows that the method can identify cell states corresponding to common lung tumor types and suggest possible evolutionary relationships among them that show good correspondence with our current understanding of lung tumor development.</p> <p>Conclusions</p> <p>Unmixing methods provide a way to make use of both intra-tumor heterogeneity and large probe sets for tumor phylogeny inference, establishing a new avenue towards the construction of detailed, accurate portraits of common tumor sub-types and the mechanisms by which they develop. These reconstructions are likely to have future value in discovering and diagnosing novel cancer sub-types and in identifying targets for therapeutic development.</p

    Ubiquitous [Na+]i/[K+]i-Sensitive Transcriptome in Mammalian Cells: Evidence for Ca2+i-Independent Excitation-Transcription Coupling

    Get PDF
    Stimulus-dependent elevation of intracellular Ca2+ ([Ca2+]i) affects the expression of numerous genes – a phenomenon known as excitation-transcription coupling. Recently, we found that increases in [Na+]i trigger c-Fos expression via a novel Ca2+i-independent pathway. In the present study, we identified ubiquitous and tissue-specific [Na+]i/[K+]i-sensitive transcriptomes by comparative analysis of differentially expressed genes in vascular smooth muscle cells from rat aorta (RVSMC), the human adenocarcinoma cell line HeLa, and human umbilical vein endothelial cells (HUVEC). To augment [Na+]i and reduce [K+]i, cells were treated for 3 hrs with the Na+,K+-ATPase inhibitor ouabain or placed for the same time in the K+-free medium. Employing Affymetrix-based technology, we detected changes in expression levels of 684, 737 and 1839 transcripts in HeLa, HUVEC and RVSMC, respectively, that were highly correlated between two treatments (p<0.0001; R2>0.62). Among these Na+i/K+i-sensitive genes, 80 transcripts were common for all three types of cells. To establish if changes in gene expression are dependent on increases in [Ca2+]i, we performed identical experiments in Ca2+-free media supplemented with extracellular and intracellular Ca2+ chelators. Surprisingly, this procedure elevated rather than decreased the number of ubiquitous and cell-type specific Na+i/K+i-sensitive genes. Among the ubiquitous Na+i/K+i-sensitive genes whose expression was regulated independently of the presence of Ca2+ chelators by more than 3-fold, we discovered several transcription factors (Fos, Jun, Hes1, Nfkbia), interleukin-6, protein phosphatase 1 regulatory subunit, dual specificity phosphatase (Dusp8), prostaglandin-endoperoxide synthase 2, cyclin L1, whereas expression of metallopeptidase Adamts1, adrenomedulin, Dups1, Dusp10 and Dusp16 was detected exclusively in Ca2+-depleted cells. Overall, our findings indicate that Ca2+i-independent mechanisms of excitation-transcription coupling are involved in transcriptomic alterations triggered by elevation of the [Na+]i/[K+]i ratio. There results likely have profound implications for normal and pathological regulation of mammalian cells, including sustained excitation of neuronal cells, intensive exercise and ischemia-triggered disorders

    Mesenchymal tumours of the mediastinum—part II

    Get PDF

    A 2014 medical informatics perspective on clinical decision support systems: do we hit the ceiling of effectiveness?

    No full text
    To summarize recent research and propose a selection of best papers published in 2013 in the field of computer-based decision support in health care. Two literature reviews were performed by the two section editors from bibliographic databases with a focus on clinical decision support systems (CDSSs) and computer provider order entry in order to select a list of candidate best papers to be peer-reviewed by external reviewers. The full review process highlighted three papers, illustrating current trends in the domain of clinical decision support. The first trend is the development of theoretical approaches for CDSSs, and is exemplified by a paper proposing the integration of family histories and pedigrees in a CDSS. The second trend is illustrated by well-designed CDSSs, showing good theoretical performances and acceptance, while failing to show a clinical impact. An example is given with a paper reporting on scorecards aiming to reduce adverse drug events. The third trend is represented by research works that try to understand the limits of CDSS use, for instance by analyzing interactions between general practitioners, patients, and a CDSS. CDSSs can achieve good theoretical results in terms of sensibility and specificity, as well as a good acceptance, but evaluations often fail to demonstrate a clinical impact. Future research is needed to better understand the causes of this observation and imagine new effective solutions for CDSS implementation

    Toward a formalization of the process to select IMIA Yearbook best papers.

    No full text
    Each year, the International Medical Informatics Association Yearbook recognizes significant scientific papers, labelled as &quot;best papers&quot;, published the previous year in the subfields of biomedical informatics that correspond to the different section topics of the journal. For each section, about fifteen pre-selected &quot;candidate&quot; best papers are externally peer-reviewed to select the actual best papers. Although based on the available literature, little is known about the pre-selection process.To move toward an explicit formalization of the candidate best papers selection process to reduce variability in the literature search across sections and over years.A methodological framework is proposed to build for each section topic specific queries tailored to PubMed and Web of Science citation databases. The two sets of returned papers are merged and reviewed by two independent section editors and citations are tagged as &quot;discarded&quot;, &quot;pending&quot;, and &quot;kept&quot;. A protocolized consolidation step is then jointly cond

    Artificial Feeding Birds (AFB): a new metaheuristic inspired by the behavior of pigeons

    Get PDF
    International audienceMany optimization algorithms and metaheuristics have been inspired by nature. These algorithms often permit solving a wide range of optimization problems. Most of them were inspired by exceptional or extraordinary animal behaviors. On the contrary, in this chapter, we present Artificial Feeding Birds (AFB), a new metaheuristic inspired by the very trivial behavior of birds searching for food. AFB is very simple, yet efficient, and can be easily adapted to various optimization problems. We present application to unconstrained global nonlinear optimization, with several benchmark functions and the training of artificial neural networks (ANN), and to the resolution of ordering combinatorial optimization problems, with two examples: the traveling salesman problem and the optimization of rainbow boxes (a recent visualization technique for overlapping sets). We compare the results with those produced with Artificial Bee Colony (ABC), Firefly Algorithm (FA), Genetic Algorithm (GA) and Ant Colony Optimization (ACO), showing that AFB gives results equivalent or better than the other metaheuristics. Finally, we discuss the choice of inspiration sources from nature, before concluding

    A Visual Decision Support System for Helping Physicians to Make A decision on New Drugs

    No full text
    International audienceWhen new drugs come onto the market, physicians have to decide whether they will consider the new drug for their future prescriptions. However, there is no absolute " right " decision: it depends on the physician's opinion, practice and patient base. Here, we propose a visual approach for supporting this decision using iconic, interactive and graphical presentation techniques for facilitating the comparison of a new drug with already existent drugs. By comparing the drug properties, the physician is aided in his decision task. We designed a prototype containing the properties of 4 new drugs and 22 "comparator" drugs. We presented the resulting system to a group of physicians. Preliminary evaluation results showed that this approach allowed physicians to make a decision when they were lacking information about the new drug, and to change their mind if they were overconfident in the new drug
    corecore