499 research outputs found

    The Phenotype-Fitness Map in Experimental Evolution of Phages

    Get PDF
    Evolutionary biologists commonly interpret adaptations of organisms by reference to a phenotype-fitness map, a model of how different states of a phenotype affect fitness. Notwithstanding the popularity of this approach, it remains difficult to directly test these mappings, both because the map often describes only a small subset of phenotypes contributing to total fitness and because direct measures of fitness are difficult to obtain and compare to the map. Both limitations can be overcome for bacterial viruses (phages) grown in the experimental condition of unlimited hosts. A complete accounting of fitness requires 3 easily measured phenotypes, and total fitness is also directly measurable for arbitrary genotypes. Yet despite the presumed transparency of this system, directly estimated fitnesses often differ from fitnesses calculated from the phenotype-fitness map. This study attempts to resolve these discrepancies, both by developing a more exact analytical phenotype-fitness map and by exploring the empirical foundations of direct fitness estimates. We derive an equation (the phenotype-fitness map) for exponential phage growth that allows an arbitrary distribution of lysis times and burst sizes. We also show that direct estimates of fitness are, in many cases, plausibly in error because the population has not attained stable age distribution and thus violates the model underlying the phenotype-fitness map. In conjunction with data provided here, the new understanding appears to resolve a discrepancy between the reported fitness of phage T7 and the substantially lower value calculated from its phenotype-fitness map

    Identification of priorities for improvement of medication safety in primary care: a PRIORITIZE study

    Get PDF
    Background Medication error is a frequent, harmful and costly patient safety incident. Research to date has mostly focused on medication errors in hospitals. In this study, we aimed to identify the main causes of, and solutions to, medication error in primary care. Methods We used a novel priority-setting method for identifying and ranking patient safety problems and solutions called PRIORITIZE. We invited 500 North West London primary care clinicians to complete an open-ended questionnaire to identify three main problems and solutions relating to medication error in primary care. 113 clinicians submitted responses, which we thematically synthesized into a composite list of 48 distinct problems and 45 solutions. A group of 57 clinicians randomly selected from the initial cohort scored these and an overall ranking was derived. The agreement between the clinicians’ scores was presented using the average expert agreement (AEA). The study was conducted between September 2013 and November 2014. Results The top three problems were incomplete reconciliation of medication during patient ‘hand-overs’, inadequate patient education about their medication use and poor discharge summaries. The highest ranked solutions included development of a standardized discharge summary template, reduction of unnecessary prescribing, and minimisation of polypharmacy. Overall, better communication between the healthcare provider and patient, quality assurance approaches during medication prescribing and monitoring, and patient education on how to use their medication were considered the top priorities. The highest ranked suggestions received the strongest agreement among the clinicians, i.e. the highest AEA score. Conclusions Clinicians identified a range of suggestions for better medication management, quality assurance procedures and patient education. According to clinicians, medication errors can be largely prevented with feasible and affordable interventions. PRIORITIZE is a new, convenient, systematic, and replicable method, and merits further exploration with a view to becoming a part of a routine preventative patient safety monitoring mechanism

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    United in Separation? Lozi Secessionism in Zambia and Namibia

    Get PDF
    Secessionism perseveres as a complex political phenomenon in Africa, yet often a more in-depth analysis is overshadowed by the aspirational simplicity of pursuing a new state. Using historical and contemporary approaches, this edited volume offers the most exhaustive collection of empirical studies of African secessionism to date. The respected expert contributors put salient and lesser known cases into comparative perspective, covering Biafra, Katanga, Eritrea and South Sudan alongside Barotseland, Cabinda, and the Comoros, among others. Suggesting that African secessionism can be understood through the categories of aspiration, grievance, performance, and disenchantment, the book's analytical framework promises to be a building block for future studies of the topic

    Antigenic Diversity, Transmission Mechanisms, and the Evolution of Pathogens

    Get PDF
    Pathogens have evolved diverse strategies to maximize their transmission fitness. Here we investigate these strategies for directly transmitted pathogens using mathematical models of disease pathogenesis and transmission, modeling fitness as a function of within- and between-host pathogen dynamics. The within-host model includes realistic constraints on pathogen replication via resource depletion and cross-immunity between pathogen strains. We find three distinct types of infection emerge as maxima in the fitness landscape, each characterized by particular within-host dynamics, host population contact network structure, and transmission mode. These three infection types are associated with distinct non-overlapping ranges of levels of antigenic diversity, and well-defined patterns of within-host dynamics and between-host transmissibility. Fitness, quantified by the basic reproduction number, also falls within distinct ranges for each infection type. Every type is optimal for certain contact structures over a range of contact rates. Sexually transmitted infections and childhood diseases are identified as exemplar types for low and high contact rates, respectively. This work generates a plausible mechanistic hypothesis for the observed tradeoff between pathogen transmissibility and antigenic diversity, and shows how different classes of pathogens arise evolutionarily as fitness optima for different contact network structures and host contact rates

    The sex locus is tightly linked to factors conferring sex-specific lethal effects in the mosquito Aedes aegypti

    Get PDF
    In many taxa, sex chromosomes are heteromorphic and largely non-recombining. Evolutionary models predict that spread of recombination suppression on the Y chromosome is fueled by the accumulation of sexually antagonistic alleles in close linkage to the sex determination region. However, empirical evidence for the existence of sexually antagonistic alleles is scarce. In the mosquito Aedes aegypti, the sex-determining chromosomes are homomorphic. The region of suppressed recombination, which surrounds the male-specific sex-determining gene, remains very small, despite ancient origin of the sex chromosomes in the Aedes lineage. We conducted a genetic analysis of the A. aegypti chromosome region tightly linked to the sex locus. We used a strain with an enhanced green fluorescent protein (EGFP)-tagged transgene inserted near the male-determining gene to monitor crossing-over events close to the boundary of the sex-determining region (SDR), and to trace the inheritance pattern of the transgene in relation to sex. In a series of crossing experiments involving individuals with a recombinant sex chromosome we found developmental abnormalities leading to 1:2 sex biases, caused by lethality of half of the male or female progeny. Our results suggest that various factors causing sex-specific lethal effects are clustered within the neighborhood of the SDR, which in the affected sex are likely lost or gained through recombination, leading to death. These may include genes that are recessive lethal, vital for development and/or sexually antagonistic. The sex chromosome fragment in question represents a fascinating test case for the analysis of processes that shape stable boundaries of a non-recombining region

    Genome-Wide Gene Expression Analysis Suggests an Important Role of Suppressed Immunity in Pathogenesis of Kashin-Beck Disease

    Get PDF
    OBJECTIVE: To investigate the differences between the gene expression profiles in peripheral blood mononuclear cells (PBMC) from normal controls and patients with Kashin-Beck disease (KBD). METHODS: Twenty KBD patients and 12 normal subjects were selected from a KBD-endemic area and divided into four pairs of KBD vs. control (KBD, n = 5 per pair; control, n = 3 per pair). RNAs were respectively isolated from KBD PBMCs and normal PBMCs. Gene expression profiles were analyzed by oligonucleotide microarray. The gene expression profiles in PBMCs from KBD patients and normal controls were compared and the differentially expressed genes were identified. The obtained microarray data was further confirmed by using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). RESULTS: Approximately 501 genes, corresponding to 2.4% of the total probe transcripts, showed a 2-fold change in differential expression. 19.4% (97 out of 501)of the differentially expressed genes were commonly detected in all the four pairs. Among the 97 differentially expressed genes, 83 genes were up-regulated and 14 genes were down-regulated, compared with those in the normal controls. Some differentially expressed genes were found to be related to functions such as immunity, metabolism, apoptosis, cystoskeleton and cell movement, and extracellular matrix. The validity of our microarray data were supported by the results of qRT-PCR assay. CONCLUSION: Differences in the PBMC gene expression profile between the KBD patients and the normal controls exhibited a similar pattern among all the four pairs of microarrays examined, indicating that the suppressed immunity may play an important role in the pathogenesis of KBD

    CD36 selection of 3D7 Plasmodium falciparum associated with severe childhood malaria results in reduced VAR4 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A subset of the <it>Plasmodium falciparum </it>erythrocyte membrane protein 1 (PfEMP1<sub>SM</sub>) is involved in the cytoadherence of <it>P. falciparum</it>-infected red blood cells (iRBC) contributing to the pathogenesis of severe disease among young children in malaria endemic areas. The PfEMP1<sub>SM </sub>are encoded by group A <it>var </it>genes that are composed of a more constrained range of amino acid sequences than groups B and C <it>var </it>genes encoding PfEMP1<sub>UM </sub>associated with uncomplicated malaria. Also, unlike <it>var </it>genes from groups B and C, those from group A do not have sequences consistent with CD36 binding – a major cytoadhesion phenotype of <it>P. falciparum </it>isolates.</p> <p>Methods</p> <p>A 3D7 PfEMP1<sub>SM </sub>sub-line (3D7<sub>SM</sub>) expressing VAR4 (PFD1235w/MAL8P1.207) was selected for binding to CD36. The protein expression of this parasite line was monitored by surface staining of iRBC using VAR4-specific antibodies. The serological phenotype of the 3D7<sub>SM </sub>parasites was determined by flow cytometry using malaria semi-immune and immune plasma and transcription of the 59 <it>var </it>genes in 3D7 were analysed by real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) using <it>var</it>-specific primers.</p> <p>Results</p> <p>A selection-induced increased adhesion of 3D7<sub>SM </sub>iRBC to CD36 resulted in a reduced <it>var4 </it>transcription and VAR4 surface expression.</p> <p>Conclusion</p> <p>VAR4 is not involved in CD36 adhesion. The current findings are consistent with the notion that CD36 adhesion is not associated with particular virulent parasite phenotypes, such as those believed to be exhibited by VAR4 expressing parasites.</p

    Blood lipids and prostate cancer: a Mendelian randomization analysis

    Get PDF
    Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL consortium were analyzed. Allele scores based on single nucleotide polymorphisms (SNPs) previously reported to be uniquely associated with each of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels, were first validated in an independent dataset, and then entered into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL, comparing high- (≥7 Gleason score) versus low-grade (<7 Gleason score) cancers was 1.50 (95% CI: 0.92, 2.46; P = 0.11). A genetically instrumented SD increase in TGs was weakly associated with stage: the OR for advanced versus localized cancer per unit increase in genetic risk score was 1.68 (95% CI: 0.95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk. We found weak evidence that higher LDL and TG levels increase aggressive prostate cancer risk, and that a variant in HMGCR (that mimics the LDL lowering effect of statin drugs) reduces risk. However, inferences are limited by sample size and evidence of pleiotropy

    Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials of immunologic therapies provide opportunities to study the cellular and molecular effects of those therapies and may permit identification of biomarkers of response. When the trials are performed at multiple centers, transport and storage of clinical specimens become important variables that may affect lymphocyte viability and function in blood and tissue specimens. The effect of temperature during storage and shipment of peripheral blood on subsequent processing, recovery, and function of lymphocytes is understudied and represents the focus of this study.</p> <p>Methods</p> <p>Peripheral blood samples (n = 285) from patients enrolled in 2 clinical trials of a melanoma vaccine were shipped from clinical centers 250 or 1100 miles to a central laboratory at the sponsoring institution. The yield of peripheral blood mononuclear cells (PBMC) collected before and after cryostorage was correlated with temperatures encountered during shipment. Also, to simulate shipping of whole blood, heparinized blood from healthy donors was collected and stored at 15°C, 22°C, 30°C, or 40°C, for varied intervals before isolation of PBMC. Specimen integrity was assessed by measures of yield, recovery, viability, and function of isolated lymphocytes. Several packaging systems were also evaluated during simulated shipping for the ability to maintain the internal temperature in adverse temperatures over time.</p> <p>Results</p> <p>Blood specimen containers experienced temperatures during shipment ranging from -1 to 35°C. Exposure to temperatures above room temperature (22°C) resulted in greater yields of PBMC. Reduced cell recovery following cryo-preservation as well as decreased viability and immune function were observed in specimens exposed to 15°C or 40°C for greater than 8 hours when compared to storage at 22°C. There was a trend toward improved preservation of blood specimen integrity stored at 30°C prior to processing for all time points tested. Internal temperatures of blood shipping containers were maintained longer in an acceptable range when warm packs were included.</p> <p>Conclusions</p> <p>Blood packages shipped overnight by commercial carrier may encounter extreme seasonal temperatures. Therefore, considerations in the design of shipping containers should include protecting against extreme ambient temperature deviations and maintaining specimen temperature above 22°C or preferably near 30°C.</p
    corecore