629 research outputs found

    Electronic Transport Spectroscopy of Carbon Nanotubes in a Magnetic Field

    Full text link
    We report magnetic field spectroscopy measurements in carbon nanotube quantum dots exhibiting four-fold shell structure in the energy level spectrum. The magnetic field induces a large splitting between the two orbital states of each shell, demonstrating their opposite magnetic moment and determining transitions in the spin and orbital configuration of the quantum dot ground state. We use inelastic cotunneling spectroscopy to accurately resolve the spin and orbital contributions to the magnetic moment. A small coupling is found between orbitals with opposite magnetic moment leading to anticrossing behavior at zero field.Comment: 7 pages, 4 figure

    Electronic excitation spectrum of metallic carbon nanotubes

    Full text link
    We have studied the discrete electronic spectrum of closed metallic nanotube quantum dots. At low temperatures, the stability diagrams show a very regular four-fold pattern that allows for the determination of the electron addition and excitation energies. The measured nanotube spectra are in excellent agreement with theoretical predictions based on the nanotube band structure. Our results permit the complete identification of the electron quantum states in nanotube quantum dots.Comment: 4 pages, 3 figure

    Josephson current through a single Anderson impurity coupled to BCS leads

    Full text link
    We investigate the Josephson current J(\phi) through a quantum dot embedded between two superconductors showing a phase difference \phi. The system is modeled as a single Anderson impurity coupled to BCS leads, and the functional and the numerical renormalization group frameworks are employed to treat the local Coulomb interaction U. We reestablish the picture of a quantum phase transition occurring if the ratio between the Kondo temperature T_K and the superconducting energy gap \Delta or, at appropriate T_K/\Delta, the phase difference \phi or the impurity energy is varied. We present accurate zero- as well as finite-temperature T data for the current itself, thereby settling a dispute raised about its magnitude. For small to intermediate U and at T=0 the truncated functional renormalization group is demonstrated to produce reliable results without the need to implement demanding numerics. It thus provides a tool to extract characteristics from experimental current-voltage measurements.Comment: version accepted for publication in PR

    Chemical reactivity imprint lithography on graphene: Controlling the substrate influence on electron transfer reactions

    Full text link
    The chemical functionalization of graphene enables control over electronic properties and sensor recognition sites. However, its study is confounded by an unusually strong influence of the underlying substrate. In this paper, we show a stark difference in the rate of electron transfer chemistry with aryl diazonium salts on monolayer graphene supported on a broad range of substrates. Reactions proceed rapidly when graphene is on SiO_2 and Al_2O_3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces. The effect is contrary to expectations based on doping levels and can instead be described using a reactivity model accounting for substrate-induced electron-hole puddles in graphene. Raman spectroscopic mapping is used to characterize the effect of the substrates on graphene. Reactivity imprint lithography (RIL) is demonstrated as a technique for spatially patterning chemical groups on graphene by patterning the underlying substrate, and is applied to the covalent tethering of proteins on graphene.Comment: 25 pages, 6 figure

    Defining and controlling double quantum dots in single-walled carbon nanotubes

    Full text link
    We report the experimental realization of double quantum dots in single-walled carbon nanotubes. The device consists of a nanotube with source and drain contact, and three additional top-gate electrodes in between. We show that, by energizing these top-gates, it is possible to locally gate a nanotube, to create a barrier, or to tune the chemical potential of a part of the nanotube. At low temperatures we find (for three different devices) that in certain ranges of top-gate voltages our device acts as a double quantum dot, evidenced by the typical honeycomb charge stability pattern.Comment: 9 pages, 3 figure

    Bipolar supercurrent in graphene

    Full text link
    Graphene -a recently discovered one-atom-thick layer of graphite- constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e^2/h at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here, we study the Josephson effect in graphene. Our experiments rely on mesoscopic superconducting junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes, where the charge density can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene and constitute the first demonstration of phase coherent electronic transport at the Dirac point.Comment: Under review, 12 pages, 4 Figs., suppl. info (v2 identical, resolved file problems

    Electron-hole symmetry in a semiconducting carbon nanotube quantum dot

    Full text link
    Optical and electronic phenomena in solids arise from the behaviour of electrons and holes (unoccupied states in a filled electron sea). Electron-hole symmetry can often be invoked as a simplifying description, which states that electrons with energy above the Fermi sea behave the same as holes below the Fermi energy. In semiconductors, however, electron-hole symmetry is generally absent since the energy band structure of the conduction band differs from the valence band. Here we report on measurements of the discrete, quantized-energy spectrum of electrons and holes in a semiconducting carbon nanotube. Through a gate, an individual nanotube is filled controllably with a precise number of either electrons or holes, starting from one. The discrete excitation spectrum for a nanotube with N holes is strikingly similar to the corresponding spectrum for N electrons. This observation of near perfect electron-hole symmetry demonstrates for the first time that a semiconducting nanotube can be free of charged impurities, even in the limit of few-electrons or holes. We furthermore find an anomalously small Zeeman spin splitting and an excitation spectrum indicating strong electron-electron interactions.Comment: 12 pages, 4 figure

    Noisy Kondo impurities

    Full text link
    The anti-ferromagnetic coupling of a magnetic impurity carrying a spin with the conduction electrons spins of a host metal is the basic mechanism responsible for the increase of the resistance of an alloy such as Cu0.998{}_{0.998}Fe0.002{}_{0.002} at low temperature, as originally suggested by Kondo . This coupling has emerged as a very generic property of localized electronic states coupled to a continuum . The possibility to design artificial controllable magnetic impurities in nanoscopic conductors has opened a path to study this many body phenomenon in unusual situations as compared to the initial one and, in particular, in out of equilibrium situations. So far, measurements have focused on the average current. Here, we report on \textit{current fluctuations} (noise) measurements in artificial Kondo impurities made in carbon nanotube devices. We find a striking enhancement of the current noise within the Kondo resonance, in contradiction with simple non-interacting theories. Our findings provide a test bench for one of the most important many-body theories of condensed matter in out of equilibrium situations and shed light on the noise properties of highly conductive molecular devices.Comment: minor differences with published versio

    Revealing the electronic structure of a carbon nanotube carrying a supercurrent

    Get PDF
    Carbon nanotubes (CNTs) are not intrinsically superconducting but they can carry a supercurrent when connected to superconducting electrodes. This supercurrent is mainly transmitted by discrete entangled electron-hole states confined to the nanotube, called Andreev Bound States (ABS). These states are a key concept in mesoscopic superconductivity as they provide a universal description of Josephson-like effects in quantum-coherent nanostructures (e.g. molecules, nanowires, magnetic or normal metallic layers) connected to superconducting leads. We report here the first tunneling spectroscopy of individually resolved ABS, in a nanotube-superconductor device. Analyzing the evolution of the ABS spectrum with a gate voltage, we show that the ABS arise from the discrete electronic levels of the molecule and that they reveal detailed information about the energies of these levels, their relative spin orientation and the coupling to the leads. Such measurements hence constitute a powerful new spectroscopic technique capable of elucidating the electronic structure of CNT-based devices, including those with well-coupled leads. This is relevant for conventional applications (e.g. superconducting or normal transistors, SQUIDs) and quantum information processing (e.g. entangled electron pairs generation, ABS-based qubits). Finally, our device is a new type of dc-measurable SQUID
    corecore