629 research outputs found
Electronic Transport Spectroscopy of Carbon Nanotubes in a Magnetic Field
We report magnetic field spectroscopy measurements in carbon nanotube quantum
dots exhibiting four-fold shell structure in the energy level spectrum. The
magnetic field induces a large splitting between the two orbital states of each
shell, demonstrating their opposite magnetic moment and determining transitions
in the spin and orbital configuration of the quantum dot ground state. We use
inelastic cotunneling spectroscopy to accurately resolve the spin and orbital
contributions to the magnetic moment. A small coupling is found between
orbitals with opposite magnetic moment leading to anticrossing behavior at zero
field.Comment: 7 pages, 4 figure
Electronic excitation spectrum of metallic carbon nanotubes
We have studied the discrete electronic spectrum of closed metallic nanotube
quantum dots. At low temperatures, the stability diagrams show a very regular
four-fold pattern that allows for the determination of the electron addition
and excitation energies. The measured nanotube spectra are in excellent
agreement with theoretical predictions based on the nanotube band structure.
Our results permit the complete identification of the electron quantum states
in nanotube quantum dots.Comment: 4 pages, 3 figure
Josephson current through a single Anderson impurity coupled to BCS leads
We investigate the Josephson current J(\phi) through a quantum dot embedded
between two superconductors showing a phase difference \phi. The system is
modeled as a single Anderson impurity coupled to BCS leads, and the functional
and the numerical renormalization group frameworks are employed to treat the
local Coulomb interaction U. We reestablish the picture of a quantum phase
transition occurring if the ratio between the Kondo temperature T_K and the
superconducting energy gap \Delta or, at appropriate T_K/\Delta, the phase
difference \phi or the impurity energy is varied. We present accurate zero- as
well as finite-temperature T data for the current itself, thereby settling a
dispute raised about its magnitude. For small to intermediate U and at T=0 the
truncated functional renormalization group is demonstrated to produce reliable
results without the need to implement demanding numerics. It thus provides a
tool to extract characteristics from experimental current-voltage measurements.Comment: version accepted for publication in PR
Chemical reactivity imprint lithography on graphene: Controlling the substrate influence on electron transfer reactions
The chemical functionalization of graphene enables control over electronic
properties and sensor recognition sites. However, its study is confounded by an
unusually strong influence of the underlying substrate. In this paper, we show
a stark difference in the rate of electron transfer chemistry with aryl
diazonium salts on monolayer graphene supported on a broad range of substrates.
Reactions proceed rapidly when graphene is on SiO_2 and Al_2O_3 (sapphire), but
negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces. The
effect is contrary to expectations based on doping levels and can instead be
described using a reactivity model accounting for substrate-induced
electron-hole puddles in graphene. Raman spectroscopic mapping is used to
characterize the effect of the substrates on graphene. Reactivity imprint
lithography (RIL) is demonstrated as a technique for spatially patterning
chemical groups on graphene by patterning the underlying substrate, and is
applied to the covalent tethering of proteins on graphene.Comment: 25 pages, 6 figure
Defining and controlling double quantum dots in single-walled carbon nanotubes
We report the experimental realization of double quantum dots in
single-walled carbon nanotubes. The device consists of a nanotube with source
and drain contact, and three additional top-gate electrodes in between. We show
that, by energizing these top-gates, it is possible to locally gate a nanotube,
to create a barrier, or to tune the chemical potential of a part of the
nanotube. At low temperatures we find (for three different devices) that in
certain ranges of top-gate voltages our device acts as a double quantum dot,
evidenced by the typical honeycomb charge stability pattern.Comment: 9 pages, 3 figure
Bipolar supercurrent in graphene
Graphene -a recently discovered one-atom-thick layer of graphite- constitutes
a new model system in condensed matter physics, because it is the first
material in which charge carriers behave as massless chiral relativistic
particles. The anomalous quantization of the Hall conductance, which is now
understood theoretically, is one of the experimental signatures of the peculiar
transport properties of relativistic electrons in graphene. Other unusual
phenomena, like the finite conductivity of order 4e^2/h at the charge
neutrality (or Dirac) point, have come as a surprise and remain to be
explained. Here, we study the Josephson effect in graphene. Our experiments
rely on mesoscopic superconducting junctions consisting of a graphene layer
contacted by two closely spaced superconducting electrodes, where the charge
density can be controlled by means of a gate electrode. We observe a
supercurrent that, depending on the gate voltage, is carried by either
electrons in the conduction band or by holes in the valence band. More
importantly, we find that not only the normal state conductance of graphene is
finite, but also a finite supercurrent can flow at zero charge density. Our
observations shed light on the special role of time reversal symmetry in
graphene and constitute the first demonstration of phase coherent electronic
transport at the Dirac point.Comment: Under review, 12 pages, 4 Figs., suppl. info (v2 identical, resolved
file problems
Electron-hole symmetry in a semiconducting carbon nanotube quantum dot
Optical and electronic phenomena in solids arise from the behaviour of
electrons and holes (unoccupied states in a filled electron sea). Electron-hole
symmetry can often be invoked as a simplifying description, which states that
electrons with energy above the Fermi sea behave the same as holes below the
Fermi energy. In semiconductors, however, electron-hole symmetry is generally
absent since the energy band structure of the conduction band differs from the
valence band. Here we report on measurements of the discrete, quantized-energy
spectrum of electrons and holes in a semiconducting carbon nanotube. Through a
gate, an individual nanotube is filled controllably with a precise number of
either electrons or holes, starting from one. The discrete excitation spectrum
for a nanotube with N holes is strikingly similar to the corresponding spectrum
for N electrons. This observation of near perfect electron-hole symmetry
demonstrates for the first time that a semiconducting nanotube can be free of
charged impurities, even in the limit of few-electrons or holes. We furthermore
find an anomalously small Zeeman spin splitting and an excitation spectrum
indicating strong electron-electron interactions.Comment: 12 pages, 4 figure
Noisy Kondo impurities
The anti-ferromagnetic coupling of a magnetic impurity carrying a spin with
the conduction electrons spins of a host metal is the basic mechanism
responsible for the increase of the resistance of an alloy such as
CuFe at low temperature, as originally suggested by
Kondo . This coupling has emerged as a very generic property of localized
electronic states coupled to a continuum . The possibility to design artificial
controllable magnetic impurities in nanoscopic conductors has opened a path to
study this many body phenomenon in unusual situations as compared to the
initial one and, in particular, in out of equilibrium situations. So far,
measurements have focused on the average current. Here, we report on
\textit{current fluctuations} (noise) measurements in artificial Kondo
impurities made in carbon nanotube devices. We find a striking enhancement of
the current noise within the Kondo resonance, in contradiction with simple
non-interacting theories. Our findings provide a test bench for one of the most
important many-body theories of condensed matter in out of equilibrium
situations and shed light on the noise properties of highly conductive
molecular devices.Comment: minor differences with published versio
Revealing the electronic structure of a carbon nanotube carrying a supercurrent
Carbon nanotubes (CNTs) are not intrinsically superconducting but they can
carry a supercurrent when connected to superconducting electrodes. This
supercurrent is mainly transmitted by discrete entangled electron-hole states
confined to the nanotube, called Andreev Bound States (ABS). These states are a
key concept in mesoscopic superconductivity as they provide a universal
description of Josephson-like effects in quantum-coherent nanostructures (e.g.
molecules, nanowires, magnetic or normal metallic layers) connected to
superconducting leads. We report here the first tunneling spectroscopy of
individually resolved ABS, in a nanotube-superconductor device. Analyzing the
evolution of the ABS spectrum with a gate voltage, we show that the ABS arise
from the discrete electronic levels of the molecule and that they reveal
detailed information about the energies of these levels, their relative spin
orientation and the coupling to the leads. Such measurements hence constitute a
powerful new spectroscopic technique capable of elucidating the electronic
structure of CNT-based devices, including those with well-coupled leads. This
is relevant for conventional applications (e.g. superconducting or normal
transistors, SQUIDs) and quantum information processing (e.g. entangled
electron pairs generation, ABS-based qubits). Finally, our device is a new type
of dc-measurable SQUID
- …
