546 research outputs found

    Pipeline Monitoring Architecture based on observability and controllability Analysis

    Get PDF
    Recently many techniques with different applicability have been developed for damage detection in the pipeline. The pipeline system is designed as a distributed parameter system, where the state space of the distributed parameter system has infinite dimension. This paper is dedicated to the problem of observability as well as controllability analysis in the pipeline systems. Some theorems are presented in order to test the observability and controllability of the system. Computing the rank of the controllability and observability matrix is carried out using Matlab

    Modelling and Analysis of Flow Rate and Pressure Head in Pipelines

    Get PDF
    Currently, various approaches with several utilities are proposed to identify damage in the pipeline. The pipeline system is modeled in the form of a distributed parameter system, such that the state space related to the distributed parameter system contains infinite dimension. In this paper, a novel technique is proposed to analyze and model the flow in the pipeline. Important theorems are proposed for testing the observability as well as controllability of the proposed model

    Electronic excitation spectrum of metallic carbon nanotubes

    Full text link
    We have studied the discrete electronic spectrum of closed metallic nanotube quantum dots. At low temperatures, the stability diagrams show a very regular four-fold pattern that allows for the determination of the electron addition and excitation energies. The measured nanotube spectra are in excellent agreement with theoretical predictions based on the nanotube band structure. Our results permit the complete identification of the electron quantum states in nanotube quantum dots.Comment: 4 pages, 3 figure

    Control of Flow Rate in Pipeline Using PID Controller

    Get PDF
    In this paper a PID controller is utilized in order to control the flow rate of the heavy-oil in pipelines by controlling the vibration in motor-pump. A torsional actuator is placed on the motor-pump in order to control the vibration on motor and consequently controlling the flow rates in pipelines. The necessary conditions for asymptotic stability of the proposed controller is validated by implementing the Lyapunov stability theorem. The theoretical concepts are validated utilizing numerical simulations and analysis, which proves the effectiveness of the PID controller in the control of flow rates in pipelines

    Electronic Transport Spectroscopy of Carbon Nanotubes in a Magnetic Field

    Full text link
    We report magnetic field spectroscopy measurements in carbon nanotube quantum dots exhibiting four-fold shell structure in the energy level spectrum. The magnetic field induces a large splitting between the two orbital states of each shell, demonstrating their opposite magnetic moment and determining transitions in the spin and orbital configuration of the quantum dot ground state. We use inelastic cotunneling spectroscopy to accurately resolve the spin and orbital contributions to the magnetic moment. A small coupling is found between orbitals with opposite magnetic moment leading to anticrossing behavior at zero field.Comment: 7 pages, 4 figure

    Blockage Detection in Pipeline Based on the Extended Kalman Filter Observer

    Get PDF
    Currently numerous approaches with various applicability have been generated in order to detect damage in pipe networks. Pipeline faults such as leaks and partial or complete blockages usually create serious problems for engineers. The model-based leak, as well as block detection methods for the pipeline systems gets more and more attention. Among these model-based methods, the state observer and state feedback based methods are usually used. While the observability, as well as controllability, are taken to be the prerequisites for utilizing these techniques. In this work, a new technique based on the extended Kalman filter observer is proposed in order to detect and locate the blockage in the pipeline. Furthermore, the analysis of observability and controllability in the pipe networks is investigated. Important theorems are given for testing the observability as well as controllability of the pipeline system

    Josephson current through a single Anderson impurity coupled to BCS leads

    Full text link
    We investigate the Josephson current J(\phi) through a quantum dot embedded between two superconductors showing a phase difference \phi. The system is modeled as a single Anderson impurity coupled to BCS leads, and the functional and the numerical renormalization group frameworks are employed to treat the local Coulomb interaction U. We reestablish the picture of a quantum phase transition occurring if the ratio between the Kondo temperature T_K and the superconducting energy gap \Delta or, at appropriate T_K/\Delta, the phase difference \phi or the impurity energy is varied. We present accurate zero- as well as finite-temperature T data for the current itself, thereby settling a dispute raised about its magnitude. For small to intermediate U and at T=0 the truncated functional renormalization group is demonstrated to produce reliable results without the need to implement demanding numerics. It thus provides a tool to extract characteristics from experimental current-voltage measurements.Comment: version accepted for publication in PR

    Pipeline Leak Detection and Location based on Fuzzy Controller

    Get PDF
    corecore