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Abstract: Currently numerous approaches with various applicability have been generated in order
to detect damage in pipe networks. Pipeline faults such as leaks and partial or complete blockages
usually create serious problems for engineers. The model-based leak, as well as block detection
methods for the pipeline systems gets more and more attention. Among these model-based methods,
the state observer and state feedback based methods are usually used. While the observability, as well
as controllability, are taken to be the prerequisites for utilizing these techniques. In this work, a new
technique based on the extended Kalman filter observer is proposed in order to detect and locate
the blockage in the pipeline. Furthermore, the analysis of observability and controllability in the
pipe networks is investigated. Important theorems are given for testing the observability as well as
controllability of the pipeline system.
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1. Introduction

Leaks, as well as partial or complete blockages, can be considered as a usual fault arising in
pipelines that creates troubles [1–4]. Leaks result in loss of fluid that causes a loss in pressure, efficiency
as well as economic expense, also on occasions it may impact the environment. Blockage barricade flow,
which causes a loss in pressure, and so enhances the required pumping expenses in order to dominate
the loss in pressure, also occasionally blockage results in absolute termination of functioning [5,6].
Advanced diagnosis, as well as an exact place of leaks or blockages, can help in avoiding the troubles
created by such faults and also develop the correct timing decision in order to deal with faults for
preventing or diminishing production/performance suspension [7–11].

Blockages have been classified based on their physical extent related to the entire length of the
system. Localized contractions, which are taken to be point discontinuities, are defined as discrete
blockages. Blockages that contain remarkable length related to the entire pipe length are defined as
extended blockages [12]. Dissimilar to the leaks inside piping systems, blockages do not produce
obvious exterior indicators for their location to be mentioned as the release and agglomeration of
fluids surrounding the pipe. Oftentimes intrusive approaches, utilizing devices the insertion of a
closed-circuit camera or a robotic PIG (pipeline intervention gadget), are needed in order to specify the
place of blockages. Insertion of a camera or robotic pig can lead to several uncertainties related to the
speed of travel and the distance of travel in the midst of the insertion point and the blockage such that
on many occasions cases the camera or the robotic pig is trapped into the blockage and leads to greater
trouble in this case compared with the appearance of the blockage solely.
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Recently, flow analysis is developed on the basis of efficient methods in order to identify blockages.
The developed techniques utilize fluid transients according to the responding of the system to an
injected transient in order to detect, locate, as well as to measure blockages, which have demonstrated
a promising development. In [13,14] a time reflection technique is suggested in order to detect partial
blockage of discrete and extended types in a single pipeline for different numbers of blockages. In [15]
an impulse response technique is proposed in order to detect leaks as well as partial blockages of
discrete type in a single pipeline, and also the technique is tested numerically. In [16] the authors
used the damping of fluid transients on the basis of the analytical solution as well as experimental
verifications in order to detect partial single discrete blockage in a single pipeline. In [17] the numerical
outcomes with laboratory experiments are compared and concluded that the blockage location can be
identified with nearly no error, whilst the size identification contains some errors.

The recent published research findings are more dependent on designing the observer, controller
or fault identification approaches [18–24]. In this work, a novel method is proposed in order to analyse
pipeline system, generally for identification and location of blockage using model-based techniques
and extended Kalman filter observer. The modelling process is based on discretization with the
finite-difference technique of classical mass as well as continuity equations. The discretization results
in a system of ordinary differential equations with boundary conditions, which demonstrate faults as
well as pipeline accessories. The states of the produced system are flows, pressure heads, the blockage
and a parameter concerned with the blockage intensity. In continuous-time, a nonlinear system is used
for designing observers. Observers are commonly on the basis of a conversion of the treated system
into a triangular observable form accordingly, the variables that are straightly estimated correlate with
the output derivatives. Furthermore, in this paper, the observability and the controllability of the pipe
networks are investigated.

2. Pipeline Modelling

Here, we neglected the convective variation in velocity, also the compressibility in the line of
length (Γ). The liquid density (ρ), the flow rate (Φ) and also pressure (P) at the entry and exit of the
pipe can be measured for evaluation. The cross-sectional region (Θ) related to the pipe was taken to be
fixed all over the pipe system. The feature of the pipe is illustrated in Figure 1.
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Figure 1. Schematic pipeline.

For acquiring the mass and momentum in hydrodynamics utilizing Newton’s second law (F = ma)
to a control volume in the continuum and body force pipe [25] (ρ= f

2δv) the below-mentioned equation
can be developed,

∂v
∂t

+
1
ρ

∂p
∂λ

+
f

2δ
v = 0. (1)
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By substituting v = Φ
Θ and p = ρgΠ in (1) the following relation is gotten,

∂(Φ
Θ )

∂t
+

1
ρ

∂(ρgΠ)

∂λ
+

f
2δ

(
Φ
Θ
) = 0, (2)

which may be simplified as
∂(Φ)

Θ∂t
+
ρg
ρ

∂(Π)

∂λ
+

f
2δΘ

Φ = 0. (3)

This equation may be written as

∂Φ
∂t

+ Θg
∂
∂λ

H +
f Φ
2δ

= 0, (4)

where Π is taken to be the pressure head (m), Φ is taken to be the flow rate (m3/s), λ is considered
as the length coordinate (m), t is considered as the time coordinate (s), g is taken to be the gravity(
m/s2

)
, Θ is taken to be the section area

(
m2

)
, δ is taken to be the diameter (m) and f is considered as

the friction coefficient.
In most work the friction coefficient is fixed, even if it is sometimes updated known to depend

on the so-called Reynolds number (Re) and the roughness friction coefficient of the pipe (e). The
Swamee–Jain equation [26] describes this friction coefficient value for a pipe with a circular section of
diameter (δ) as:

f =

 0.5

ln[0.27
(

e
δ

)
+ 5.74 1

Re0.9 ]


2

. (5)

Such that,

Re = 4
ρΦ
πδµ

=
ρvδ
µ

, (6)

where ρ is the fluid density and µ is the fluid viscosity. Equation (5) is valid for 10−8 < e
δ < 0.01 and

5000 < Re < 108.
The continuity equation can be defined as follows for the pipeline system,

∂p
∂t

+ ρa2 ∂v
∂λ

= 0. (7)

Replacing the pressure head (Π) as well as the flow rate (Φ) in Equation (7), we have,

∂Π
∂t

+
a2

gΘ
∂Φ
∂λ

= 0. (8)

Such that a is taken to be the velocity of the pressure wave (m/s).
The pressure head (Π) and flow rate (Φ) are taken to be functions of position and time as Π(x, t)

and Φ(x, t), such that λ ∈ [0, Γ], where Γ is the pipe length.
If a system has minor variations we have,

∂Φ
∂t

+ Θg
∂
∂λ

Π +
f Φ
δΘ

= 0. (9)

3. Blockage Modelling

Blockages have been considered as usual faults in pipes as well as pipeline networks. They can
be generated because of the agglomeration of the transported fluid or the partial block of a valve.
A blocked is a reduced cross-sectional area of the pipe with significant length γ. For modelling the
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blocked stretch (see Figure 2), the blockage region, displayed by Θb, is expressed as a percentage of the
pipe region Θ. The subscript b signifies the blockage.

Pressure H1 varies due to the blockage and this changed pressure is displayed by H1b.Electronics 2019, 8, x FOR PEER REVIEW 4 of 15 
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Figure 2. Blockage in the pipeline.

A mathematical expression for a blockage can be deduced from the Bernoulli’s equation, which
relates the pressure difference between the pipeline inside and outside. Bernoulli’s equation applies
under the following considerations [27].

• Non viscous flow;
• Continuous flow;
• Through the pipe line;
• Constant density.

By applying Bernoulli’s principle as well as continuity equations among point 1 (before the
blockage) and point 1b (in the blockage), we have [27],

Π1 +
V2

1

2g
+ Z1 + hw1 = Π1b +

V2
1b

2g
+ Z1b + hw1b + ε, (10)

where Π denotes the pressure head of the fluid, V denotes the velocity of the fluid flow, ρ is considered
to be the density of the fluid, Z is taken to be the elevation at points blockage, hw denotes energy inputs
with pumps or turbines and also ε is the pressure losses in the pipe sector. Since In horizontal pipe
levels Z1, as well as Z1b, are equivalent, and also energy inputs with pumps and/or turbines are zero
(in this case), so we have

Π1 +
V2

1

2g
= Π1b +

V2
1b

2g
+ ε. (11)

According to the continuity of conservation of mass we have

ρV1Θ = ρV1bΘ1b, (12)

where Θ is taken to be the cross-sectional area of the pipeline, also Θb is taken to be the cross-sectional
area at the blockage. Hence,

V1b =
V1Θ
Θb

. (13)

By substituting Equation (13) in Equation (11) the following relation is extracted

Π1b = Π1 +
V2

1

2g

1−
(

Θ
Θb

)2− ε. (14)
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Assume ε to be very small, as it is taken to be a function of the flow as well as the blockage
geometry. Hence, the below-mentioned relation, which contains a discharge coefficient η, is utilized:

η = 1−
ε

V2
1

2g

(
1−

(
Θ
Θb

)2
) . (15)

By substituting Equation (15) in Equation (14) the following relation is extracted

Π1b = Π1 + η
Θ2

bV2
1 −Θ2V2

1

2gΘ2
b

, (16)

which, stated in regards to the volumetric flow Q = VΘ, becomes

Π1b = Π1 + η
Θ2

bΦ2
1 −Θ2Φ2

1

2gΘ2Θ2
b

. (17)

This model considers the two circumstances happening at the two edges of the blocked sector:
a constriction happening upstream of the blockage (from Θ to Θb) and a distension happening
downstream (from Θb to Θ).

The following equations describe the dynamics of pressures head and flows before blockage
(Π1, Φ1) and after it (Π1b, Φ1b) respectively.

.
Φ0 = −Θg Π1−Π0

λ −
f

2δΦ0,
.

Φ1 = −Θg Π1−Π0
λ −

f
2δΦ1,

.
Φ2b = −Θbg (Π2b−Π1b)

γ −
fb
2δΦ2b,

.
Φn = −Θg (Πn−Π2)

(Γ−λ−γ) −
f

2δΦn,
.

Π0 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π1 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π2b = −

a2

gΘb

(Φ2b−Φ1b)
γ ,

(18)

where Π1b and Π2 are calculated using Bernoulli’s and continuity Equations [27] as below

Π1b = Π1 + η
Θ2

bΦ2
1−Θ2Φ2

1
2gΘ2Θ2

b
,

Π2 = Π2b + η
Θ2Φ2

2b−Θ2
bΦ2

2b
2gΘ2Θ2

b
,

(19)

and at the point of the blockage, the flow rates are equal such that Φ1 = Φ1b and Φ2b = Φ2.
In Equations (18) and (19), Π0, Π1, Π1b, Π2, Π2b and Πn are the pressure head variables and
Φ0, Φ1, Φ1b, Φ2, Φ2b and Φn are the flow rate variables. In this work, we aimed to construct observer
and controller for the systems stated in Equation (8) as well as Equation (9). A nonlinear model can be
expressed as follows

dxi
dt

= f (xi, t) + g(xi, t, u), (20)

y = h(xi, t, u), (21)

such that x is taken to be the state vector, which has i unknown flow perturbation quantities at every
point.

Several numerical methods are available for the solution of Ordinary differential equations (ODEs)
Equations (20) and (21). Here the finite-difference approach is used for its simplicity, and because it is
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suitable for simulation and non-linear observer design [28]. Control variables in the different cases can
be presented by the pressures head and flow rates at the beginning and end of the pipe. The solution
of the discretized model, using any technique needs boundary conditions that present known values
of the variables at the edge of the researched area. Boundary conditions may just be pressures head,
just flows, or combining both. The selection of boundary conditions alters the construction of the
models, also may change the quantity of equations wherein the discretized model is subdivided. In real
systems, boundary conditions can be defined using the elements existing in the hydraulic system.
Figure 3 represents the possible boundary conditions in a scheme of a discretized pipeline. We had six
cases for the modelling, based on choosing the control variables.Electronics 2019, 8, x FOR PEER REVIEW 6 of 15 
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Case 1: The controllable initial as well as boundary conditions are taken to be pressure heads at
the start and ending of the pipe, see Figure 3A. The input conditions can be stated as{

Π(0, t) = Πin(t)
Π(L, t) = Πout(t)

, (22)

and output values are {
Φ(0, t) = Φin(t)
Φ(L, t) = Φout(t)

. (23)

The vectors u(t) and y(t) are the inputs and outputs of the system respectively. We have
x = (Φ0 Φ1 Φ2b Φn Π1 Π2b γ λ Θb)

T, u := [Πin Πout]
T = (Π0 Πn)

T and y = (Φ0 Φn)
T. Hence,
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.
Φ0 = −Θg Π1−Π0

λ −
f

2δΦ0,
.

Φ1 = −Θg Π1−Π0
λ −

f
2δΦ1,

.
Φ2b = −Θbg (Π2b−Π1b)

γ −
fb
2δΦ2b,

.
Φn = −Θg (Πn−Π2)

(Γ−λ−γ) −
f

2δΦn,
.

Π1 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π2b = −

a2

gΘb

(Φ2b−Φ1b)
γ ,

.
γ = 0,
.
λ = 0,
.

Θb = 0,

(24)

where Π1b and Π2 are calculated using Bernoulli’s and continuity Equations as below,

Π1b = Π1 + η
Θ2

bΦ2
1−Θ2Φ2

1
2gΘ2Θ2

b
.

Π2 = Π2b + η
Θ2Φ2

2b−Θ2
bΦ2

2b
2gΘ2Θ2

b
.

(25)

Case 2: The controllable boundary conditions are taken to be flow rate and pressure head at the
start and ending of the pipe, respectively, see Figure 3B. The input conditions can be stated as{

Π(0, t) = Πin(t)
Φ(L, t) = Φout(t)

, (26)

and output values are {
Φ(0, t) = Φin(t)

Π(L, t) = Πout(t)
. (27)

The vectors u(t) and y(t) are the inputs and outputs of the system respectively. We have

x =
(
Φ0Φ1 Φ2b Π1 Π2bΠn γ λ Θb

)T
, u := [Φin Πout]

T = (Φn Π0)
T and y := [Φin Πout]

T =

(Φ0 Πn)
T. Hence,

.
Φ0 = −Θg Π1−Π0

λ −
f

2δΦ0,
.

Φ1 = −Θg Π1−Π0
λ −

f
2δΦ1,

.
Φ2b = −Θbg (Π2b−Π1b)

γ −
fb
2δΦ2b,

.
Π1 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π2b = −

a2

gΘb

(Φ2b−Φ1b)
γ ,

.
Πn = − a2

gΘ
(Φn−Φ2)
(Γ−λ−γ) ,

.
γ = 0,
.
λ = 0,
.

Θb = 0,

(28)
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where Π1b and Π2 are calculated using Bernoulli’s and continuity equations as below,

Π1b = Π1 + η
Θ2

bΦ2
1−Θ2Φ2

1
2gΘ2Θ2

b
.

Π2 = Π2b + η
Θ2Φ2

2b−Θ2
bΦ2

2b
2gΘ2Θ2

b
.

(29)

Case 3: The controllable initial and boundary conditions are taken to be flow rate and pressure
head at the start of the pipe, see Figure 3C. The input conditions can be stated as{

Π(0, t) = Πin(t)
Φ(0, t) = Φin(t)

, (30)

and output values are {
Φ(L, t) = Φout(t)
Π(L, t) = Πout(t)

. (31)

The vectors u(t) and y(t) are the inputs and outputs of the system respectively. We have
x = (Φ1 Φ2b Φn Π1 Π2b Πn γ λ Θb)

T, u := [Φin Πin]
T = (Φ0 Π0)

T and y := (Φn Πn)
T. Hence,

.
Φ1 = −Θg Π1−Π0

λ −
f

2δΦ1,
.

Φ2b = −Θbg (Π2b−Π1b)
γ −

fb
2δΦ2b,

.
Φn = −Θg (Πn−Π2)

(Γ−λ−γ) −
f

2δΦn,
.

Π1 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π2b = −

a2

gΘb

(Φ2b−Φ1b)
γ ,

.
Πn = − a2

gΘ
(Φn−Φ2)
(Γ−λ−γ) ,

.
γ = 0,
.
λ = 0,
.

Θb = 0,

(32)

where Π1b and Π2 are calculated using Bernoulli’s and continuity equations as below,

Π1b = Π1 + η
Θ2

bΦ2
1−Θ2Φ2

1
2gΘ2Θ2

b
.

Π2 = Π2b + η
Θ2Φ2

2b−Θ2
bΦ2

2b
2gΘ2Θ2

b
.

(33)

Case 4: The controllable initial and boundary conditions are taken to be flow rate at the start and
pressure head at the ending of the pipe, see Figure 3D. The input conditions can be stated as{

Π(L, t) = Πout(t)
Φ(0, t) = Φin(t)

, (34)

and output values are {
Φ(L, t) = Φout(t)
Π(0, t) = Πin(t)

. (35)
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The vectors u(t) and y(t) are the inputs and outputs of the system respectively. We have
x = (Φ1 Φ2b Φn Π0 Π1 Π2b γ λ Θb)

T, u := [Φin Πout]
T = (Φ0 Πn)

T and y := (Φn Π0)
T. Hence,

.
Φ1 = −Θg Π1−Π0

λ −
f

2δΦ1,
.

Φ2b = −Θbg (Π2b−Π1b)
γ −

fb
2δΦ2b,

.
Φn = −Θg (Πn−Π2)

(Γ−λ−γ) −
f

2δΦn,
.

Π0 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π1 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π2b = −

a2

gΘb

(Φ2b−Φ1b)
γ ,

.
γ = 0,
.
λ = 0,
.

Θb = 0,

(36)

where Π1b and Π2 are calculated using Bernoulli’s and continuity equations as below,

Π1b = Π1 + η
Θ2

bΦ2
1−Θ2Φ2

1
2gΘ2Θ2

b
.

Π2 = Π2b + η
Θ2Φ2

2b−Θ2
bΦ2

2b
2gΘ2Θ2

b
.

(37)

Case 5: The controllable initial and boundary conditions are taken to be flow rate at the start and
ending of the pipe, see Figure 3E. The input conditions can be stated as{

Φ(0, t) = Φin(t)
Φ(L, t) = Φout(t)

, (38)

and output values are {
Π(0, t) = Πin(t)
Π(L, t) = Πout(t)

. (39)

The vectors u(t) and y(t) are the inputs and outputs of the system respectively. We have
x = (Φ1 Φ2b Π0 Π1 Π2b Πn γ z Θb)

T, u := [Φin Φout]
T = (Φ0 Φn)

T and y := (Π0 Πn)
T. Hence,

.
Φ1 = −Θg Π1−Π0

λ −
f

2δΦ1,
.

Φ2b = −Θbg (Π2b−Π1b)
γ −

fb
2δΦ2b,

.
Π0 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π1 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π2b = −

a2

gΘb

(Φ2b−Φ1b)
γ ,

.
Πn = − a2

gΘ
(Φn−Φ2)
(Γ−λ−γ) ,

.
γ = 0,
.
λ = 0,

Θb = 0,

(40)
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where Π1b and Π2 are calculated using Bernoulli’s and continuity equations as below,

Π1b = Π1 + η
Θ2

bΦ2
1−Θ2Φ2

1
2gΘ2Θ2

b
.

Π2 = Π2b + η
Θ2Φ2

2b−Θ2
bΦ2

2b
2gΘ2Θ2

b
.

(41)

Case 6: The controllable boundary conditions are taken to be pressure heads and flow rate at the
start and ending of the pipe, respectively, see Figure 3F. The input conditions can be stated as{

Φ(L, t) = Φout(t)
Π(L, t) = Πout(t)

, (42)

and output values are {
Φ(0, t) = Φin(t)
Π(L, t) = Πin(t)

. (43)

The vectors u(t) and y(t) are the inputs and outputs of the system respectively. We have

x =
(
Φ1 Φ2b Φn Π0 Π1 Π2b γ λ Θb

)T
, u := [Φout Πout]

T = (Φn Πn)
T and y := (Φ0 Π0)

T. Hence,

.
Φ0 = −Θg Π1−Π0

λ −
f

2δΦ0,
.

Φ1 = −Θg Π1−Π0
λ −

f
2δΦ1,

.
Φ2b = −Θbg (Π2b−Π1b)

γ −
fb
2δΦ2b,

.
Π0 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π1 = − a2

gΘ
Φ1−Φ0
λ ,

.
Π2b = −

a2

gΘb

(Φ2b−Φ1b)
γ ,

.
γ = 0,
.
λ = 0,
.

Θb = 0,

(44)

where Π1b and Π2 are calculated using Bernoulli’s and continuity equations as below,

Π1b = Π1 + η
Θ2

bΦ2
1−Θ2Φ2

1
2gΘ2Θ2

b
.

Π2 = Π2b + η
Θ2Φ2

2b−Θ2
bΦ2

2b
2gΘ2Θ2

b
.

(45)

4. Observer Design by Using the Extended Kalman Filter

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the Kalman
filter, which linearizes about an estimate of the current mean and covariance. The extended Kalman
filter was introduced to solve the problem of non-linearity in Kalman filter. The standard extended
Kalman filter is commonly derived from a first order Taylor expansion of the state dynamics and
measurement model. There is a version of the extended Kalman filter that extends this concept to
include also an approximation of the second order Taylor term. The extended Kalman filter resembles
the Kalman filter in that they both intend to get correct first order moments. The extended Kalman
filter makes the non linear function into linear function using Taylor Series, it helps in getting the linear
approximation of a non linear function. However, one common idea considered in this paper for the
aim of blockage identification problem is the blockage parameter approximation λ, γ as well as Θb,
utilizing an extended Kalman filter. For this aim, the model proposed in Equations (18) and (19) has
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been developed by the dynamics of these parameters, also a nonlinear observer has been made for the
developed system [29]. For different cases it has been assumed to measure only pressures head, or
only flow rates or combination of both at the beginning or end of the pipeline. For case 1, flow rates at
the start and ending of the pipe are considered as outputs which are directly measured as follows,

y = [Φ0 Φn]
T, (46)

and the pressure heads at the start and ending of the pipe considered as known inputs are

u = [Π0 Πn]
T. (47)

Also, .
λ = 0;

.
γ = 0;

.
Θb = 0. (48)

The derivatives of blockage parameters z, λ and Θb have been taken zero as their alterations are
minute. Therefore Equations (18) and (19) can be extended as below,



.
Φ0.
Φ1.
Φ2b.
Φn.
Π1.
Π2b

.
γ
.
λ
.

Θb



=



−Θg Π1−Π0
λ −

f
2δΦ0

−Θg Π1−H0
λ −

f
2δΦ1

−Θbg (Π2b−Π1b)
γ −

fb
2δΦ2b

−Ag (Πn−H2)
(L−λ−γ) −

f
2δΦn

−
a2

gΘ
Φ1−Φ0
λ

−
a2

gΘb

(Φ2b−Φ1b)
γ

0
0
0



, (49)

where Π1b and Π2 are computed as below [27],

Π1b = Π1 + η
Θ2

bΦ2
1−Θ2Φ2

1
2gΘ2Θ2

b
.

Π2 = Π2b + η
Θ2Φ2

2b−Θ2
bΦ2

2b
2gΘ2Θ2

b
.

(50)

Accordingly, Equation (49) can be formulated as below,

.
x = φ(x, u), (51)

where x = (Φ1 Φ2b Φn Π0 Π1 Π2b γ λ Θb)
T and φ(x, u) is taken as a nonlinear function.

Now, to estimate the block parameters λ, γ and A0, a discrete-time extended Kalman filter is
designed for the nonlinear model described in Equation (49). To do that, this model is discretized by
using Heun’s method. In this method, the solution for the initial value problem is given by [30],

.
x = φ(x(t), u(t)),

x(t0) = x0.
(52)

Therefore,

xi+1 = xi +
∆t
2

[
φ
(
xi, ui

)
+ φ

(
xi + ∆tφ

(
xi, ui

)
, ui+1

)]
, (53)
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where ∆t is taken to be the time step also, i is taken to be the index of discrete-time. Applying
Equation (53) into Equation (49) the following are extracted,

Φi+1
0 = Φi

0 +
∆t
2 (−Θg

Πi
1−Πi

0
zi −

f
2δΦi

0 −Θg
Π̂i+1

1 −Πi+1
0

zi+1 ) −
f

2δ Φ̂i+1
0 ,

Φi+1
1 = Φi

1 +
∆t
2 (−Ag

Πi
1−Πi

0
zi −

f
2δΦi

1 −Ag
Π̂i+1

1 −Πi+1
0

zi+1 ) −
f

2δ Φ̂i+1
1 ,

Φi+1
2b = Φi

2b +
∆t
2 (−Θbg

Π̂i
2b−Π̂i

1b
λi −

fb
2δΦi

2b −Ag
Π̂i+1

2b −Π̂i+1
1b

γi+1 ) −
f

2δ Φ̂i+1
2b ,

Φi+1
n = Φi

n +
∆t
2 (−Θg

Π̂i
n−Π̂i

2
(Γ−λi−γi)

−
f

2δΦi
n −Ag

Π̂i+1
n −Π̂i+1

2
(Γ−λi+1−γi+1)

) −
f

2δ Φ̂i+1
n ,

Πi+1
1 = Πi

n +
∆t
2 (− a2

gΘ
Φi

1−Φi
0

λi −
a2

gΘ
Φ̂i+1

1 −Φ̂i+1
0

λi+1 ),

Πi+1
2b = Πi

2b +
∆t
2 (− a2

gAb

Φi
1−Φi

0
γi −

a2

gΘ
Φ̂i+1

1 −Φ̂i+1
0

λi+1 ),

γi+1 = γi,

λi+1 = λi,

Θb
i+1 = Θb

i,

(54)

in compact form:
xi+1 = φ

(
xi, ui+1, ui

)
; yi = Hxi. (55)

where
xi =

[
Φi

0 Φi
1 Φi

2b Φi
n Πi

n Πi
2b γ

i λi Θb
i
]T

;

ui =
[
Πi

0 Πi
n

]T

H =

[
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

]
.

(56)

Observer Approach

A the discrete-time extended Kalman filter as a state observer for the system Equation (49) is
defined as below [31],

x̂i = x̂ĩ + κi(yi
−Hx̂ĩ), (57)

where x̂ĩ is the priori estimate of xi:
x̂ĩ = φ(x̂i−1, ui−1). (58)

κi is the Kalman gain:

κi = PĩHT(HPĩHT + R)
−1

. (59)

Pĩ is the priori covariance matrix:

Pĩ = JiPi−1
(
Ji
)T

+ Q. (60)

Pi is the posteriori covariance matrix:

Pi =
(
I −KiH

)
Pĩ. (61)

Ji is the Jacobian matrix:

Ji =
∂φ(x, u)
∂x

∣∣∣x=x̂i . (62)

Finally, R and Q are known as the covariance matrices of measure and process noises, respectively.
Notice that:

x̂i = (Φ̂i
1 Φ̂i

2b Φ̂i
n Π̂i

0 Π̂i
1 Π̂i

2b γ̂
i λ̂i Θ̂i

b), (63)
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with P0̃ = (P0̃)
T
> 0, R = RT > 0 and Q = QT > 0.

5. Simulation Results

Here, simulations were carried out in Matlab for one case for the model shown in Figure 1. The
model was realized on the pipeline with the following physical parameters:

The length of the pipeline was Γ = 120 m, the diameter of the pipe was δ= 0.08 m, the cross-section
was Θ = 5.03 × 10−3 m2, density was ρ = 1000 kg/m3, gravity was g = 9.81 m/s2, the friction factor
of the pipe was f = 0.006, the friction factor of the blockage part was fb = 0.016 and the wave speed
was a = 1250 m/s.

Control variables are the pressures head at the start and ending of the pipeline (Π0 and Πn).
In addition, the flow rates (Φ0 and Φn) are taken to be outputs of the system.

The covariance matrices of measure and process noises introduced by expressions respectively

Ř = Diagonal Matrix
[
2.25 × 10−5, 5.5 × 10−2, 2.25 × 10−5, 1000, 10−7

]
(64)

Q̌ = Diagonal Matrix
[
2.25 × 10−5, 2.25 × 10−5

]
(65)

The initialization of the state is given in Table 1. The model, the observer, as well as the state
feedback construction are demonstrated in Figure 4.

Table 1. Initialization second order extended Kalman filter (SEKF).

CEKF Value Units

Φ̂1 7.75 × 10−3 (m3/s)
Π̂leak 8.32 (m)

Φ̂2 7.75 × 10−3 (m3/s)
λ̂ 45.42 (m)

γ̂ 0 (m
5
2 /s)
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Figures 4 and 5 demonstrate the simulated pressure head at the inlet (H(in) = H0 = 14 m) and
outlet (H(out) = Hn = 7.3 m) of the pipe.
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Figures 6–8 shows the estimation of the position, length and the area of blockage in the pipeline.
Where the Position of blockage was 80 m from initial of pipe and length of blockage was 12.2 m and
cross section area in blockage was 3.5 × 10−3 m2.
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6. Conclusions

The second order extended Kalman filter (SEKF) is based on a second order Taylor expansion of a
nonlinear system, in contrast to the more common (first order) extended Kalman filter (EKF) that is
based on a second order Taylor expansion of a nonlinear system. The objective of this paper was to
analyse and model the blockage in the pipe networks. We utilized the finite difference technique since
it is an uncomplicated approach for designing a more appropriate model for observing and controlling
the construction of the nonlinear system. This technique partitions the whole pipe into N sectors. Flow
and pressure head estimations were well estimated in the presence of a blockage. Some theorems were
presented in order to detect blockage in the system. In future we will investigate the estimation of
multi blockages in the pipe networks.
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