125 research outputs found

    Concise review: Clinical relevance of drug drug and herb drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein).

    Get PDF
    Learning Objectives After completing this course, the reader will be able to: Identify important sources of variability in drug exposure caused by drug interactions mediated by P-glycoprotein.Describe how unwanted drugā€“drug interactions may lead to unexpected serious toxicity or undertreatment.Prevent these interactions by individualizing pharmacotherapy; this means selecting noninteracting drugs or adapting the dose of (the) interacting drug(s). CME Access and take the CME test online and receive 1 AMA PRA Category 1 Creditā„¢ at CME.TheOncologist.co

    Detection of Colorectal Cancer by Serum and Tissue Protein Profiling: A Prospective Study in a Population at Risk

    Get PDF
    Colorectal cancer (CRC) is the second most common cause of cancer-related death in Europe and its prognosis is largely dependent on stage at diagnosis. Currently, there are no suitable tumour markers for early detection of CRC. In a retrospective study we previously found discriminative CRC serum protein profiles with surface enhanced laser desorption ionisationā€”time of flight mass spectrometry (SELDI-TOF MS). We now aimed at prospective validation of these profiles. Additionally, we assessed their applicability for follow-up after surgery and investigated tissue protein profiles of patients with CRC and adenomatous polyps (AP). Serum and tissue samples were collected from patients without known malignancy with an indication for colonoscopy and patients with AP and CRC during colonoscopy. Serum samples of controls (CON; n = 359), patients with AP (n = 177) and CRC (n = 73), as well as tissue samples from AP (n = 52) and CRC (n = 47) were analysed as described previously. Peak intensities were compared by non-parametric testing. Discriminative power of differentially expressed proteins was assessed with support vector machines (SVM). We confirmed the decreased serum levels of apolipoprotein C-1 in CRC in the current population. No differences were observed between CON and AP. Apolipoprotein C-I levels did not change significantly within 1 month post-surgery, although a gradual return to normal levels was observed. Several proteins differed between AP and CRC tissue, among which a peak with similar mass as apolipoprotein C-1. This peak was increased in CRC compared to AP. Although we prospectively validated the serum decrease of apolipoprotein C-1 in CRC, serum protein profiles did not yield SVM classifiers with suitable sensitivity and specificity for classification of our patient groups

    Predictive ability of a semi-mechanistic model for neutropenia in the development of novel anti-cancer agents: two case studies

    Get PDF
    Abstract In cancer chemotherapy neutropenia is a common dose-limiting toxicity. An ability to predict the neutropenic effects of cytotoxic agents based on proposed trial designs and models conditioned on previous studies would be valuable. The aim of this study was to evaluate the ability of a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model for myelosuppression to predict the neutropenia observed in Phase I clinical studies, based on parameter estimates obtained from prior trials. Pharmacokinetic and neutropenia data from 5 clinical trials for diflomotecan and from 4 clinical trials for indisulam were used. Data were analyzed and simulations were performed using the population approach with NONMEM VI. Parameter sets were estimated under the following scenarios: (a) data from each trial independently, (b) pooled data from all clinical trials and (c) pooled data from trials performed before the tested trial. Model performance in each of the scenarios was evaluated by means of predictive (visual and numerical) checks. The semi-mechanistic PK/PD model for neutropenia showed adequate predictive ability for both anti-cancer agents. For diflomotecan, similar predictions were obtained for the three scenarios. For indisulam predictions were better when based on data from the specific study, however when the model parameters were conditioned on data from trials performed prior to a specific study, similar predictions of the drug related-neutropenia profiles and descriptors were obtained as when all data were used. This work provides further indication that modeling and simulation tools can be applied in the early stages of drug development to optimize future trials

    Discovering novel germline genetic variants linked to severe fluoropyrimidine-related toxicity in- and outside <i>DPYD</i>

    Get PDF
    Background:Ā The Alpe-DPD study (NCT02324452) demonstrated that prospective genotyping and dose-individualization using four alleles in DPYD (DPYD*2A/rs3918290, c.1236G &gt; A/rs75017182, c.2846A &gt; T/rs67376798 and c.1679Ā T &gt; G/rs56038477) can mitigate the risk of severe fluoropyrimidine toxicity. However, this could not prevent all toxicities. The goal of this study was to identify additional genetic variants, both inside and outside DPYD, that may contribute to fluoropyrimidine toxicity.Ā Methods:Ā Biospecimens and data from the Alpe-DPD study were used. Exon sequencing was performed to identify risk variants inside DPYD. In silico and in vitro analyses were used to classify DPYD variants. A genome-wide association study (GWAS) with severe fluoropyrimidine-related toxicity was performed to identify variants outside DPYD. Association with severe toxicity was assessed using matched-pair analyses for the exon sequencing and logistic, Cox, and ordinal regression analyses for GWAS.Ā Results:Ā Twenty-four non-synonymous, frameshift, and splice site DPYD variants were detected in ten of 986 patients. Seven of these variants (c.1670C &gt; T, c.1913Ā T &gt; C, c.1925Ā T &gt; C, c.506delC, c.731A &gt; C, c.1740 + 1G &gt; T, c.763 āˆ’ 2A &gt; G) were predicted to be deleterious. The carriers of either of these variants showed a trend towards a 2.14-fold (95% CI, 0.41ā€“11.3, P = 0.388) increased risk of severe toxicity compared to matched controls (N = 30). After GWAS of 942 patients, no individual single nucleotide polymorphisms achieved genome-wide significance (P ā‰¤ 5 Ɨ 10āˆ’8), however, five variants were suggestive of association (P &lt; 5 Ɨ 10āˆ’6) with severe toxicity.Ā Conclusions:Ā Results from DPYD exon sequencing and GWAS analysis did not identify additional genetic variants associated with severe toxicity, which suggests that testing for single markers at a population level currently has limited clinical value. Identifying additional variants on an individual level is still promising to explain fluoropyrimidine-related severe toxicity. In addition, studies with larger samples sizes, in more diverse cohorts are needed to identify potential clinically relevant genetic variants related to severe fluoropyrimidine toxicity.</p

    Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers:the phase 2 ROAR trial

    Get PDF
    BRAFV600E alterations are prevalent across multiple tumors. Here we present final efficacy and safety results of a phase 2 basket trial of dabrafenib (BRAF kinase inhibitor) plus trametinib (MEK inhibitor) in eight cohorts of patients with BRAFV600E-mutated advanced rare cancers: anaplastic thyroid carcinoma (n = 36), biliary tract cancer (n = 43), gastrointestinal stromal tumor (n = 1), adenocarcinoma of the small intestine (n = 3), low-grade glioma (n = 13), high-grade glioma (n = 45), hairy cell leukemia (n = 55) and multiple myeloma (n = 19). The primary endpoint of investigator-assessed overall response rate in these cohorts was 56%, 53%, 0%, 67%, 54%, 33%, 89% and 50%, respectively. Secondary endpoints were median duration of response (DoR), progression-free survival (PFS), overall survival (OS) and safety. Median DoR was 14.4 months, 8.9 months, not reached, 7.7 months, not reached, 31.2 months, not reached and 11.1 months, respectively. Median PFS was 6.7 months, 9.0 months, not reached, not evaluable, 9.5 months, 5.5 months, not evaluable and 6.3 months, respectively. Median OS was 14.5 months, 13.5 months, not reached, 21.8 months, not evaluable, 17.6 months, not evaluable and 33.9 months, respectively. The most frequent (=20% of patients) treatment-related adverse events were pyrexia (40.8%), fatigue (25.7%), chills (25.7%), nausea (23.8%) and rash (20.4%). The encouraging tumor-agnostic activity of dabrafenib plus trametinib suggests that this could be a promising treatment approach for some patients with BRAFV600E-mutated advanced rare cancers. ClinicalTrials.gov registration: .Y

    Predicting clinical benefit from everolimus in patients with advanced solid tumors, the CPCT-03 study

    Get PDF
    Background: In this study, our aim was to identify molecular aberrations predictive for response to everolimus, an mTOR inhibitor, regardless of tumor type. Methods: To generate hypotheses about potential markers for sensitivity to mTOR inhibition, drug sensitivity and genomic profiles of 835 cell lines were analyzed. Subsequently, a multicenter study was conducted. Patients with advanced solid tumors lacking standard of care treatment options were included and underwent a pre-treatment tumor biopsy to enable DNA sequencing of 1,977 genes, derive copy number profiles and determine activation status of pS6 and pERK. Treatment benefit was determined according to TTP ratio and RECIST. We tested for associations between treatment benefit and single molecular aberrations, clusters of aberrations and pathway perturbation. Results: Cell line screens indicated several genes, such as PTEN (P = 0.016; Wald test), to be associated with sensitivity to mTOR inhibition. Subsequently 73 patients were included, of which 59 started treatment with everolimus. Response and molecular data were available from 43 patients. PTEN aberrations, i.e. copy number loss or mutation, were associated with treatment benefit (P = 0.046; Fisher's exact test). Conclusion: Loss-of-function aberrations in PTEN potentially represent a tumor type agnostic biomarker for benefit from everolimus and warrants further confirmation in subsequent studies

    Discovering novel germline genetic variants linked to severe fluoropyrimidine-related toxicity in- and outside DPYD

    Get PDF
    Background: The Alpe-DPD study (NCT02324452) demonstrated that prospective genotyping and dose-individualization using four alleles in DPYD (DPYD*2A/rs3918290, c.1236G > A/rs75017182, c.2846A > T/rs67376798 and c.1679Ā T > G/rs56038477) can mitigate the risk of severe fluoropyrimidine toxicity. However, this could not prevent all toxicities. The goal of this study was to identify additional genetic variants, both inside and outside DPYD, that may contribute to fluoropyrimidine toxicity. Methods: Biospecimens and data from the Alpe-DPD study were used. Exon sequencing was performed to identify risk variants inside DPYD. In silico and in vitro analyses were used to classify DPYD variants. A genome-wide association study (GWAS) with severe fluoropyrimidine-related toxicity was performed to identify variants outside DPYD. Association with severe toxicity was assessed using matched-pair analyses for the exon sequencing and logistic, Cox, and ordinal regression analyses for GWAS. Results: Twenty-four non-synonymous, frameshift, and splice site DPYD variants were detected in ten of 986 patients. Seven of these variants (c.1670C > T, c.1913Ā T > C, c.1925Ā T > C, c.506delC, c.731A > C, c.1740 + 1G > T, c.763 āˆ’ 2A > G) were predicted to be deleterious. The carriers of either of these variants showed a trend towards a 2.14-fold (95% CI, 0.41ā€“11.3, P = 0.388) increased risk of severe toxicity compared to matched controls (N = 30). After GWAS of 942 patients, no individual single nucleotide polymorphisms achieved genome-wide significance (P ā‰¤ 5 Ɨ 10āˆ’8), however, five variants were suggestive of association (P < 5 Ɨ 10āˆ’6) with severe toxicity. Conclusions: Results from DPYD exon sequencing and GWAS analysis did not identify additional genetic variants associated with severe toxicity, which suggests that testing for single markers at a population level currently has limited clinical value. Identifying additional variants on an individual level is still promising to explain fluoropyrimidine-related severe toxicity. In addition, studies with larger samples sizes, in more diverse cohorts are needed to identify potential clinically relevant genetic variants related to severe fluoropyrimidine toxicity
    • ā€¦
    corecore