70,637 research outputs found

    Evidence from Strandings for Geomagnetic Sensitivity in Cetaceans

    Get PDF
    We tested the hypothesis that cetaceans use weak anomalies in the geomagnetic field as cues for orientation, navigation and/or piloting. Using the positions of 212 stranding events of live animals in the Smith sonian compilation which fall within the boundaries of the USGS East-Coast Aeromagnetic Survey, we found that there are highly significant tendencies for cetaceans to beach themselves near coastal locations with local magnetic minima. Monte-Carlo simulations confirm the significance of these effects. These results suggest that cetaceans have a magnetic sensory systemcomparable to that in other migratory and homing animals, and predict that the magnetic topography and in particular the marine magnetic lineations may play an important role in guiding long-distance migration. The ‘map’ sense of migratoryanimals may therefore be largely based on a simple strategy of following paths of local magnetic minima and avoiding magnetic gradients

    The American Religious Landscape and the 2004 Presidential Vote: Increased Polarization

    Get PDF
    Presents findings from a post-election survey conducted in November and December 2004. Explores the polarization between different religions, as well as within the major religious traditions

    Ground State and Tkachenko Modes of a Rapidly Rotating Bose-Einstein Condensate in the Lowest Landau Level State

    Full text link
    The Letter considers the ground state and the Tkachenko modes for a rapidly rotating Bose-Einstein condensate (BEC), when its macroscopic wave function is a coherent superposition of states analogous to the lowest Landau levels of a charge in a magnetic field. As well as in type II superconductors close to the critical magnetic field Hc2H_{c2}, this corresponds to a periodic vortex lattice. The exact value of the shear elastic modulus of the vortex lattice, which was known from the old works on type II superconductors, essentially exceeds the values calculated recently for BEC. This is important for comparison with observation of the Tkachenko mode in the rapidly rotating BEC.Comment: 5 pages, 1 figure; discussion edited, references added, numerical factors and typos correcte

    Cosmology and the Korteweg-de Vries Equation

    Full text link
    The Korteweg-de Vries (KdV) equation is a non-linear wave equation that has played a fundamental role in diverse branches of mathematical and theoretical physics. In the present paper, we consider its significance to cosmology. It is found that the KdV equation arises in a number of important scenarios, including inflationary cosmology, the cyclic universe, loop quantum cosmology and braneworld models. Analogies can be drawn between cosmic dynamics and the propagation of the solitonic wave solution to the equation, whereby quantities such as the speed and amplitude profile of the wave can be identified with cosmological parameters such as the spectral index of the density perturbation spectrum and the energy density of the universe. The unique mathematical properties of the Schwarzian derivative operator are important to the analysis. A connection with dark solitons in Bose-Einstein condensates is briefly discussed.Comment: 7 pages; References adde

    Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    Get PDF
    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingly consistent with a (relative) Solar System r-process pattern, and are also consistent with abundance predictions expected from such neutron-capture nucleosynthesis.Comment: 8 pages, 2 figures, 1 table. To appear in the Proceedings of the NASA Laboratory Astrophysics Workshop in Las Vegas, NV (February 2006

    Induction of Colonic Aberrant Crypts in Mice by Feeding Apparent N-Nitroso Compounds Derived From Hot Dogs

    Get PDF
    Nitrite-preserved meats (e.g., hot dogs) may help cause colon cancer because they contain N-nitroso compounds. We tested whether purified hot-dog-derived total apparent N-nitroso compounds (ANC) could induce colonic aberrant crypts, which are putative precursors of colon cancer. We purified ANC precursors in hot dogs and nitrosated them to produce ANC. In preliminary tests, CF1 mice received 1 or 3 i.p. injections of 5mg azoxymethane (AOM)/kg. In Experiments 1 and 2, female A/J mice received ANC in diet. In Experiment 1, ANC dose initially dropped sharply because the ANC precursors had mostly decomposed but, later in Experiment 1 and throughout Experiment 2, ANC remained at 85 nmol/g diet. Mice were killed after 8 (AOM tests) or 17–34 (ANC tests) wk.Median numbers of aberrant crypts in the distal 2 cm of the colon for 1 and 3 AOMinjections, CF1 controls, ANC (Experiment 1), ANC (Experiment 2),and untreated A/J mice were 31, 74, 12, 20, 12, and 5–6, with P < 0.01 for both ANC tests. Experiment 2 showed somewhat increased numbers of colonic mucin-depleted foci in the ANC-treated group. We conclude that hot-dog-derived ANC induced significant numbers of aberrant crypts in the mouse colon

    Latin America in the rearview mirror

    Get PDF
    Latin American countries are the only Western countries that are poor and that aren't gaining ground on the United States. This paper evaluates why Latin America has not replicated Western economic success. We find that this failure is primarily due to TFP differences. Latin America's TFP gap is not plausibly accounted for by human capital differences, but rather reflects inefficient production. We argue that competitive barriers are a promising channel for understanding low Latin TFP. We document that Latin America has many more international and domestic competitive barriers than do Western and successful East Asian countries. We also document a number of microeconomic cases in Latin America in which large reductions in competitive barriers increase productivity to Western levels.Latin America - Economic conditions

    Latin America in the Rearview Mirror

    Get PDF
    Latin American countries are the only Western countries that are poor and that aren't gaining ground on the United States. This paper evaluates why Latin America has not replicated Western economic success. We find that this failure is primarily due to TFP differences. Latin America's TFP gap is not plausibly accounted for by human capital differences, but rather reflects inefficient production. We argue that competitive barriers are a promising channel for understanding low Latin TFP. We document that Latin America has many more international and domestic competitive barriers than do Western and successful East Asian countries. We also document a number of microeconomic cases in Latin America in which large reductions in competitive barriers increase productivity to Western levels.

    Bayesian multiscale deconvolution applied to gamma-ray spectroscopy

    Get PDF
    A common task in gamma-ray astronomy is to extract spectral information, such as model constraints and incident photon spectrum estimates, given the measured energy deposited in a detector and the detector response. This is the classic problem of spectral “deconvolution” or spectral inversion. The methods of forward folding (i.e., parameter fitting) and maximum entropy “deconvolution” (i.e., estimating independent input photon rates for each individual energy bin) have been used successfully for gamma-ray solar flares (e.g., Rank, 1997; Share and Murphy, 1995). These methods have worked well under certain conditions but there are situations were they don’t apply. These are: 1) when no reasonable model (e.g., fewer parameters than data bins) is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features (e.g., solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for both. Low count rates are a problem because these methods (as they have been implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction techniques often lead to negative count rates. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying to estimate the “true” individual input photon rates per bin can be an ill-posed problem, even without including both broad and narrow features in the spectrum (i.e., amultiscale approach). One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale framework that addresses these problems with added algorithmic advantages. We outline this new approach and demonstrate its use with time resolved solar flare gamma-ray spectroscopy
    corecore