5,649 research outputs found
Functional renormalization group study of the Anderson--Holstein model
We present a comprehensive study of the spectral and transport properties in
the Anderson--Holstein model both in and out of equilibrium using the
functional renormalization group (FRG). We show how the previously established
machinery of Matsubara and Keldysh FRG can be extended to include the local
phonon mode. Based on the analysis of spectral properties in equilibrium we
identify different regimes depending on the strength of the electron--phonon
interaction and the frequency of the phonon mode. We supplement these
considerations with analytical results from the Kondo model. We also calculate
the non-linear differential conductance through the Anderson--Holstein quantum
dot and find clear signatures of the presence of the phonon mode.Comment: 19 pages, 8 figure
Super-resolution microscopy of mitochondria.
Mitochondria, the powerhouses of the cell, are essential organelles in eukaryotic cells. With their complex inner architecture featuring a smooth outer and a highly convoluted inner membrane, they are challenging objects for microscopy. The diameter of mitochondria is generally close to the resolution limit of conventional light microscopy, rendering diffraction-unlimited super-resolution light microscopy (nanoscopy) for imaging submitochondrial protein distributions often mandatory. In this review, we discuss what can be expected when imaging mitochondria with conventional diffraction-limited and diffraction-unlimited microscopy. We provide an overview on recent studies using super-resolution microscopy to investigate mitochondria and discuss further developments and challenges in mitochondrial biology that might by addressed with these technologies in the future
Comparative study of theoretical methods for nonequilibrium quantum transport
We present a detailed comparison of three different methods designed to
tackle nonequilibrium quantum transport, namely the functional renormalization
group (fRG), the time-dependent density matrix renormalization group (tDMRG),
and the iterative summation of real-time path integrals (ISPI). For the
nonequilibrium single-impurity Anderson model (including a Zeeman term at the
impurity site), we demonstrate that the three methods are in quantitative
agreement over a wide range of parameters at the particle-hole symmetric point
as well as in the mixed-valence regime. We further compare these techniques
with two quantum Monte Carlo approaches and the time-dependent numerical
renormalization group method.Comment: 19 pages, 7 figures; published versio
Temperature induced phase averaging in one-dimensional mesoscopic systems
We analyse phase averaging in one-dimensional interacting mesoscopic systems
with several barriers and show that for incommensurate positions an independent
average over several phases can be induced by finite temperature. For three
strong barriers with conductances G_i and mutual distances larger than the
thermal length, we obtain G ~ sqrt{G_1 G_2 G_3} for the total conductance G.
For an interacting wire, this implies power laws in G(T) with novel exponents,
which we propose as an experimental fingerprint to distinguish temperature
induced phase averaging from dephasing.Comment: 6 pages, 5 figures; added one figure; slightly extende
Mass Flow Scaling of Gas-Assisted Coaxial Atomizers
This study aims to derive basic principles for liquid mass flow scaling of gas-assisted coaxial nozzles. Four liquid mass flow steps were investigated in the range of M = 20–500 kg·h, applying four atomizers with similar geometry designed at We = const. High-speed camera and phase Doppler anemometer were utilized to detect the local droplet size distribution. To estimate a reliable measurement plane, a detection method and determination according to the free jet theory was used. The resulting droplet size was analyzed, applying the aerodynamic Weber number, as well as the gas momentum flow. An empirical model was derived out of the measured data, which allows for liquid mass flow scaling when process parameters such as GLR, liquid mass flow, and required Sauter mean diameter are specified. The model was developed as a first step towards liquid mass flow scaling of gas-assisted coaxial atomizers within the investigated range of operating conditions
The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels
In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load
The process gg -> WW as a background to the Higgs signal at the LHC
The production of W pairs from the one-loop gluon fusion process is studied.
Formulas are presented for the helicity amplitudes keeping the top mass finite,
but all other quark masses zero. The correlations among the leptons coming from
the W bosons are kept. The contribution of this background to the Higgs boson
search in the WW decay mode at the LHC is estimated by applying the cuts
foreseen in experimental searches using the PYTHIA Monte Carlo program.
Kinematic distributions for the final state leptons are compared to those of
the Higgs boson signal and of the q qbar -> WW background. After applying final
cuts, the gg background is found to be large, at the level of 35% of the q qbar
background.The characteristics of the gg background are very similar to those
of the signal. Therefore, an experimental normalization of this background
component appears to be very difficult and the uncertainty must largely be
determined by theory. As a result, the significance of a Higgs signal in the gg
-> H -> WW mode at the LHC is reduced.Comment: 24 pages, 4 figure
- …