1,395 research outputs found

    Interactions of Cosmic Superstrings

    Get PDF
    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p,q)(p,q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.Comment: 22 pages, 6 figures; v2: updated reference

    Cosmic Superstring Scattering in Backgrounds

    Get PDF
    We generalize the calculation of cosmic superstring reconnection probability to non-trivial backgrounds. This is done by modeling cosmic strings as wound tachyon modes in the 0B theory, and the spacetime effective action is then used to couple this to background fields. Simple examples are given including trivial and warped compactifications. Generalization to (p,q)(p,q) strings is discussed.Comment: 12 pages, 2 figures; v2: references adde

    Gravitational Wave Bursts from Cosmic Superstring Reconnections

    Full text link
    We compute the gravitational waveform produced by cosmic superstring reconnections. This is done by first constructing the superstring reconnection trajectory, which closely resembles that of classical, instantaneous reconnection but with the singularities smoothed out due to the string path integral. We then evaluate the graviton vertex operator in this background to obtain the burst amplitude. The result is compared to the detection threshold for current and future gravitational wave detectors, finding that neither bursts nor the stochastic background would be detectable by Advanced LIGO. This disappointing but anticipated conclusion holds even for the most optimistic values of the reconnection probability and loop sizes.Comment: 26 pages, 6 figures; v2: references added and typos correcte

    The interpretive approach to religious education : challenging Thompson's interpretation

    Get PDF
    In a recent book chapter, Matthew Thompson makes some criticisms of my work, including the interpretive approach to religious education and the research and activity of Warwick Religions and Education Research Unit. Against the background of a discussion of religious education in the public sphere, my response challenges Thompson’s account, commenting on his own position in relation to dialogical approaches to religious education. The article rehearses my long held view that the ideal form of religious education in fully state funded schools of a liberal democracy should be ‘secular’ but not ‘secularist’; there should be no implication of an axiomatic secular humanist interpretation of religions

    Long Lived Large Type II Strings: decay within compactification

    Full text link
    Motivated also by recent revival of interest about metastable string states (as cosmic strings or in accelerator physics), we study the decay, in presence of dimensional compactification, of a particular superstring state, which was proven to be remarkably long-lived in the flat uncompactified scenario. We compute the decay rate by an exact numerical evaluation of the imaginary part of the one-loop propagator. For large radii of compactification, the result tends to the fully uncompactified one (lifetime T = const M^5/g^2), as expected, the string mainly decaying by massless radiation. For small radii, the features of the decay (emitted states, initial mass dependence,....) change, depending on how the string wraps on the compact dimensions.Comment: 32 pages, 24 text plus appendices, 4 figure

    Influence of heavy modes on perturbations in multiple field inflation

    Full text link
    We investigate linear cosmological perturbations in multiple field inflationary models where some of the directions are light while others are heavy (with respect to the Hubble parameter). By integrating out the massive degrees of freedom, we determine the multi-dimensional effective theory for the light degrees of freedom and give explicitly the propagation matrix that replaces the effective sound speed of the one-dimensional case. We then examine in detail the consequences of a sudden turn along the inflationary trajectory, in particular the possible breakdown of the low energy effective theory in case the heavy modes are excited. Resorting to a new basis in field space, instead of the usual adiabatic/entropic basis, we study the evolution of the perturbations during the turn. In particular, we compute the power spectrum and compare with the result obtained from the low energy effective theory.Comment: 24 pages, 13 figures; v2 substantial changes in sec.V; v3 matching the published version on JCA

    Fine Features in the Primordial Power Spectrum

    Full text link
    A possible origin of the anomalous dip and bump in the primordial power spectrum, which are reconstructed from WMAP data corresponding to the multipole ℓ=100∌140\ell=100\sim 140 by using the inversion method, is investigated as a consequence of modification of scalar field dynamics in the inflation era. Utilizing an analytic formula to handle higher order corrections to the slow-roll approximation, we evaluate the relation between a detailed shape of inflaton potential and a fine structure in the primordial power spectrum. We conclude that it is unlikely to generate the observed dip and bump in the power spectrum by adding any features in the inflaton potential. Though we can make a fine enough shape in the power spectrum by controlling the feature of the potential, the amplitude of the dip and bump becomes too small in that case.Comment: 15 pages, 11 figures, submitted to JCA

    The missing whales: relevance of “struck and lost” rates for the impact assessment of historical whaling in the southwestern Atlantic Ocean

    Get PDF
    The massive impact that open-boat historical whaling (18th to 20th centuries) had on whale populations has been traditionally estimated from records of oil and baleen plate production. However, an unknown proportion of hunted whales were struck, wounded, eventually killed, but lost, and not included in these records, suggesting that whaling impact may be critically underestimated. Whaling logbooks provide a key source for assessing past catches and losses. Here, we extract detailed records of 19875 days of activity in the southwestern Atlantic Ocean from 255 logbooks of offshore whaling voyages. During the period considered (1776–1923), whalers first targeted southern right whales (Eubalaena australis, 2497 sightings and 658 catches), gradually substituted by sperm whales (Physeter macrocephalus, 1157 sightings and 843 catches) after 1840. Loss rate factors, calculated to account for the number of “struck and lost” whales, decreased across time for both species, and were particularly high (ranging 1.09–1.6) for the southern right whale, whose population was drastically reduced by whaling, as compared to previous estimates based on rough catch records. Accurate accounting for these “lost” individuals is essential for reconstructing the impact of whaling on cetacean populations and for a proper assessment of their initial population size and demographic trends.Postprint2,27

    Methods for the recognition of geological weakness zones and other surface discontinuities caused by underground mining in Carboniferous terrain

    Get PDF
    Since March 1992 the British Geological Survey (BGS) has collaborated in a CEC part-funded project under the leadership of Dr Clasen of Saarberg, Saarbrueken, Germany. The aim of this project was to determine the most efficient combination of surface geophysical techniques to be used in combination with airborne optical scanning data for the routine detection of shallow faults. Such features, when reactivated following undermining, may become the locii of damaging subsidence, but where they can be traced in advance of mining operations then remedial measures (such as underpinning etc) may be undertaken. This final report outlines the geophysical methods applied and describes our most significant results. Conclusions are drawn concerning the relative efficiencies of each technique and possible complementary applications

    Strings at the bottom of the deformed conifold

    Full text link
    We present solutions of the equations of motion of macroscopic F and D strings extending along the non compact 4D sections of the conifold geometry and winding around the internal directions. The effect of the Goldstone modes associated with the position of the strings on the internal manifold can be seen as a current on the string that prevents it from collapsing and allows the possibility of static 4D loops. Its relevance in recent models of brane inflation is discussed.Comment: 9+1 page
    • 

    corecore