23 research outputs found

    Plant communities as a tool in temporary ponds conservation in SW Portugal

    Get PDF
    Pond conservationTemporary ponds are seasonal wetlands annually subjected to extreme and unstable ecological conditions, neither truly aquatic nor truly terrestrial. This habitat and its flora have been poorly studied and documented because of the ephemeral character of the flora, the changeable annual weather that has a great effect on the small, herbaceous taxa and the declining abundance of temporary ponds. The objectives of this study are: (a) to define plant community diversity in terms of floristic composition of ephemeral wetlands in SW Portugal, (b) to identify temporary pond types according to their vegetation composition and (c) to identify those ponds that configure the European community priority habitat (3170* – Mediterranean temporary ponds). Vegetation sampling was conducted in 29 ponds, identifying 168 species grouped among 15 plant communities. Soil texture, pH, organic C and N content were measured, but only N and percent of clay appear to be related with the distribution of each community type. The results showed that ephemeral wetlands could be classified into four type: vernal pools, marshlands, deep ponds and disturbed wetlands. Vernal pools correspond to the Mediterranean temporary ponds (3170*), protected as priority habitat under the EU Habitats Directive. Submersed Isoetes species (Isoetes setaceum and Isoetes velatum) represents, together with Eryngium corniculatum, the indicator species for vernal pools. We identify also indicator plant communities of this priority habitat, namely I. setaceum and E. corniculatum– Baldellia ranunculoides plant communities. In this region, the conservation of temporary ponds has so far been compatible with traditional agricultural activities, but today these ponds are endangered by the intensification of agriculture and the loss of traditional land use practices and by the development of touris

    The importance of nerve microenvironment for schwannoma development

    Get PDF
    Schwannomas are predominantly benign nerve sheath neoplasms caused by Nf2 gene inactivation. Presently, treatment options are mainly limited to surgical tumor resection due to the lack of effective pharmacological drugs. Although the mechanistic understanding of Nf2 gene function has advanced, it has so far been primarily restricted to Schwann cell-intrinsic events. Extracellular cues determining Schwann cell behavior with regard to schwannoma development remain unknown. Here we show pro-tumourigenic microenvironmental effects on Schwann cells where an altered axonal microenvironment in cooperation with injury signals contribute to a persistent regenerative Schwann cell response promoting schwannoma development. Specifically in genetically engineered mice following crush injuries on sciatic nerves, we found macroscopic nerve swellings in mice with homozygous nf2 gene deletion in Schwann cells and in animals with heterozygous nf2 knockout in both Schwann cells and axons. However, patient-mimicking schwannomas could only be provoked in animals with combined heterozygous nf2 knockout in Schwann cells and axons. We identified a severe re-myelination defect and sustained macrophage presence in the tumor tissue as major abnormalities. Strikingly, treatment of tumor-developing mice after nerve crush injury with medium-dose aspirin significantly decreased schwannoma progression in this disease model. Our results suggest a multifactorial concept for schwannoma formation-emphasizing axonal factors and mechanical nerve irritation as predilection site for schwannoma development. Furthermore, we provide evidence supporting the potential efficacy of anti-inflammatory drugs in the treatment of schwannomas
    corecore