16 research outputs found

    Balance in single-limb stance in healthy subjects – reliability of testing procedure and the effect of short-duration sub-maximal cycling

    Get PDF
    BACKGROUND: To assess balance in single-limb stance, center of pressure movements can be registered by stabilometry with force platforms. This can be used for evaluation of injuries to the lower extremities. It is important to ensure that the assessment tools we use in the clinical setting and in research have minimal measurement error. Previous studies have shown that the ability to maintain standing balance is decreased by fatiguing exercise. There is, however, a need for further studies regarding possible effects of general exercise on balance in single-limb stance. The aims of this study were: 1) to assess the test-retest reliability of balance variables measured in single-limb stance on a force platform, and 2) to study the effect of exercise on balance in single-limb stance, in healthy subjects. METHODS: Forty-two individuals were examined for test-retest reliability, and 24 individuals were tested before (pre-exercise) and after (post-exercise) short-duration, sub-maximal cycling. Amplitude and average speed of center of pressure movements were registered in the frontal and sagittal planes. Mean difference between test and retest with 95% confidence interval, the intraclass correlation coefficient, and the Bland and Altman graphs with limits of agreement, were used as statistical methods for assessing test-retest reliability. The paired t-test was used for comparisons between pre- and post-exercise measurements. RESULTS: No difference was found between test and retest. The intraclass correlation coefficients ranged from 0.79 to 0.95 in all stabilometric variables except one. The limits of agreement revealed that small changes in an individual's performance cannot be detected. Higher values were found after cycling in three of the eight stabilometric variables. CONCLUSIONS: The absence of systematic variation and the high ICC values, indicate that the test is reliable for distinguishing among groups of subjects. However, relatively large differences in an individual's balance performance would be required to confidently state that a change is real. The higher values found after cycling, indicate compensatory mechanisms intended to maintain balance, or a decreased ability to maintain balance. It is recommended that average speed and DEV 10; the variables showing the best reliability and effects of exercise, be used in future studies

    The effect of different skin-ankle brace application pressures on quiet single-limb balance and electromyographic activation onset of lower limb muscles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have been carried out in order to investigate the effect of ankle bracing on ankle joint function and performance. However, no study so far has examined the role of skin-brace interface pressure in neuromuscular control. The aim of this study was to investigate the effect of different skin-ankle brace interface pressures on quiet single limb balance and the electromyographic (EMG) activation sequence of four lower limb muscles.</p> <p>Methods</p> <p>Thirty three male physical education students who volunteered to take part in the study were measured under three ankle brace conditions: i) without brace, ii) with brace and 30 kPa application pressure and iii) with brace and 60 kPa application pressure. Single limb balance (anteroposterior and mediolateral parameter) was assessed on the dominant lower limb, with open and closed eyes, on a force platform, simultaneously with the EMG recording of four lower lower limb muscles' (gastrocnemius, peroneus longus, rectus femoris and biceps femoris) activation onset.</p> <p>Results</p> <p>The results showed that overall balance (total stability parameter) was not significantly affected in any of the three ankle brace conditions. However, the anteroposterior centre of pressure excursion and centre of pressure excursion velocity were significantly increased with the application of ankle brace, both with 30 and 60 kPa application pressures. Furthermore, it was found that single limb balance was significantly worse with closed eyes compared to open eyes. EMG measurements showed that the sequence of lower limb activation onset was not affected in any of the three ankle brace application conditions. The results of this study showed that the application of an ankle brace with two different skin-brace interface pressures had no effect on overall single limb balance and the sequence of lower limb muscle activation.</p> <p>Conclusion</p> <p>These findings suggest that peripheral joint receptors are either not adequately stimulated by the brace application and therefore are not able to alter the balance control strategy of the CNS, or that they play a less important role in the control of single limb balance. Further research is needed in this area with more dynamic and functional measurements, before the safe use of ankle bracing can be widely recommended.</p

    Neuromuscular training to enhance sensorimotor and functional deficits in subjects with chronic ankle instability: A systematic review and best evidence synthesis

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To summarise the available evidence for the efficacy of neuromuscular training in enhancing sensorimotor and functional deficits in subjects with chronic ankle instability (CAI).</p> <p>Design</p> <p>Systematic review with best evidence synthesis.</p> <p>Data Sources</p> <p>An electronic search was conducted through December 2009, limited to studies published in the English language, using the Pubmed, CINAHL, Embase, and SPORTDiscus databases. Reference screening of all included articles was also undertaken.</p> <p>Methods</p> <p>Studies were selected if the design was a RCT, quasi RCT, or a CCT; the patients were adolescents or adults with confirmed CAI; and one of the treatment options consisted of a neuromuscular training programme. The primary investigator independently assessed the risk of study bias and extracted relevant data. Due to clinical heterogeneity, data was analysed using a best-evidence synthesis.</p> <p>Results</p> <p>Fourteen studies were included in the review. Meta-analysis with statistical pooling of data was not possible, as the studies were considered too heterogeneous. Instead a best evidence synthesis was undertaken. There is limited to moderate evidence to support improvements in dynamic postural stability, and patient perceived functional stability through neuromuscular training in subjects with CAI. There is limited evidence of effectiveness for neuromuscular training for improving static postural stability, active and passive joint position sense (JPS), isometric strength, muscle onset latencies, shank/rearfoot coupling, and a reduction in injury recurrence rates. There is limited evidence of no effectiveness for improvements in muscle fatigue following neuromuscular intervention.</p> <p>Conclusion</p> <p>There is limited to moderate evidence of effectiveness in favour of neuromuscular training for various measures of static and dynamic postural stability, active and passive JPS, isometric strength, muscle onset latencies, shank/rearfoot coupling and injury recurrence rates. Strong evidence of effectiveness was lacking for all outcome measures. All but one of the studies included in the review were deemed to have a high risk of bias, and most studies were lacking sufficient power. Therefore, in future we recommend conducting higher quality RCTs using appropriate outcomes to assess for the effectiveness of neuromuscular training in overcoming sensorimotor deficits in subjects with CAI.</p

    Alterations in Postural Control during the World's Most Challenging Mountain Ultra-Marathon

    Get PDF
    We investigated postural control (PC) effects of a mountain ultra-marathon (MUM): a 330-km trail run with 24000 m of positive and negative change in elevation. PC was assessed prior to (PRE), during (MID) and after (POST) the MUM in experienced ultra-marathon runners (n = 18; finish time = 126+/-16 h) and in a control group (n = 8) with a similar level of sleep deprivation. Subjects were instructed to stand upright on a posturographic platform over a period of 51.2 seconds using a double-leg stance under two test conditions: eyes open (EO) and eyes closed (EC). Traditional measures of postural stability (center of pressure trajectory analysis) and stabilogram-diffusion analysis (SDA) parameters were analysed. For the SDA, a significantly greater short-term effective diffusion was found at POST compared with PRE in the medio-lateral (ML; Dxs) and antero-posterior (AP) directions (Dys) in runners (p&lt;0.05) The critical time interval (Ctx) in the ML direction was significantly higher at MID (p&lt;0.001) and POST (p&lt;0.05) than at PRE in runners. At MID (p&lt;0.001) and POST (p&lt;0.05), there was a significant difference between the two groups. The critical displacement (Cdx) in the ML was significantly higher at MID and at POST (p&lt;0.001) compared with PRE for runners. A significant difference in Cdx was observed between groups in EO at MID (p&lt;0.05) and POST (p&lt;0.005) in the ML direction and in EC at POST in the ML and AP directions (p&lt;0.05). Our findings revealed significant effects of fatigue on PC in runners, including, a significant increase in Ctx (critical time in ML plan) in EO and EC conditions. Thus, runners take longer to stabilise their body at POST than at MID. It is likely that the mountainous characteristics of MUM (unstable ground, primarily uphill/downhill running, and altitude) increase this fatigue, leading to difficulty in maintaining balance

    Efeitos da fadiga muscular induzida por exercícios no tempo de reação muscular dos fibulares em indivíduos sadios Efectos de la fatiga muscular inducida por ejercicios sobre el tiempo de reacción muscular peronea en individuos sanos Effects of the exercise-induced muscular fatigue on the time of muscular reaction of the fibularis in healthy individuals

    No full text
    A fadiga muscular (FM) é um fenômeno comum nas atividades esportivas e diárias, resultando numa piora da performance motora. Ela é considerada um dos fatores causadores de lesões músculo-esqueléticas. A entorse de tornozelo é um exemplo: a FM afetaria tanto o sistema aferente quanto o eferente. Vários estudos têm analisado a influência da FM no controle neuromuscular (CNM); entretanto, existe pouca pesquisa sobre essa influência na velocidade de reação dos músculos. O objetivo deste estudo foi verificar os efeitos da FM no tempo de reação muscular (TRM) dos músculos fibulares, que são os primeiros a responder a um estresse em inversão do tornozelo. Foram estudados 14 indivíduos saudáveis masculinos (idade: 20-35 anos), que tiveram seus TRM avaliados por meio de eletromiografia (EMG) de superfície. O início da atividade muscular foi definido como a média de repouso + 3x o desvio-padrão (DP). O TRM dos fibulares foi mensurado após uma inversão súbita de 20º realizada numa plataforma. A inversão súbita foi realizada antes e depois da fadiga muscular, que foi induzida por exercícios localizados dos fibulares até a exaustão. Os resultados mostraram que houve um aumento significativo do tempo de reação muscular após a fadiga (p < 0,01). Durante atividades esportivas prolongadas e durante o processo de reabilitação, deve-se ter cautela na realização de tarefas que requeiram respostas musculares extremamente rápidas sob condições de fadiga muscular.<br>La fatiga muscular (FM) es un fenómeno común en las actividades diarias, produciendo un empeoramiento de la actuación. Se la considera una de las causas de factores lesionantes musculares de esqueleto. El esguince del tobillo es un ejemplo: La FM afectaría tanto el sistema aferente cuanto el eferente. Varios estudios han estado analizando la influencia de FM en el comando neuromuscular (CNM), sin embargo, la existen pocas investigaciones sobre la influencia en la velocidad de reacción de los músculos. El objetivo de ese estudio era verificar los efectos de FM en el tiempo de reacción muscular (TRM) de los músculos peroneos, que son los primeros en responder a una tensión en la inversión del tobillo. Se estudiaron 14 individuos saludables masculinos (con edad: entre 20-35 años), que tenían su TRM estimado a través de la eletromiografia (EMG) de superficie. El principio de la actividad muscular se definió como el promedio del resto + 3x la desviación normal (DP). TRM de músculos peroneos estava moderado después de una inversión súbita de 20º cumplida en una plataforma. La inversión súbita se realizaba antes y después de la fatiga muscular, que era inducido por los ejercicios localizados en los músculos peróneos hasta agotamiento. Los resultados mostraron que había un aumento significante del tiempo de reacción muscular después de la fatiga (p < 0.01). Durante las actividades deportivas y durante el proceso de la rehabilitación, debe tenerse cautela en la realización de las tareas que se solicitan como respuestas musculares sumamente rápidas bajo las condiciones de fatiga muscular.<br>The muscular fatigue (MF) is a common phenomenon in the daily sports activities that results in a worsening of the motor performance. It is considered one of the major factors for muscle-skeletal damages, such as the ankle sprain, when the MF would affect both the afferent and the efferent systems. Several studies have been analyzing the influence of the MF on the neuromuscular control (NMC). Nevertheless, there are few researches comprising that influence on the velocity of the muscular reaction. The purpose of this study was to check the effects of the MF on the time of the muscular reaction (TMR) in the fibularis muscles, which are the first to respond to an inversion stress of the ankle. Fourteen healthy male individuals (age: 20-35 years) were studied, who had their TMR assessed by means of the surface electromyography (EMG). The beginning of the muscular activity was defined as the mean resting value +3x the standard deviation (SD). The TMR of the fibularis was measured after a sudden 20º inversion performed on a platform. The sudden inversion was performed before and after the muscular fatigue, which was induced through localized exercises of the fibularis up to the exhaustion. The results have shown a significant increase in the time of the muscular reaction after the fatigue (p < 0.01). While performing prolonged sportive activities and during the rehabilitation process, there must be caution to perform tasks that require extremely fast muscular responses
    corecore