15 research outputs found
Activation of transcription factors by extracellular nucleotides in immune and related cell types
Extracellular nucleotides, acting through P2 receptors, can regulate gene expression via intracellular signaling pathways that control the activity of transcription factors. Relatively little is known about the activation of transcription factors by nucleotides in immune cells. The NF-κB family of transcription factors is critical for many immune and inflammatory responses. Nucleotides released from damaged or stressed cells can act alone through certain P2 receptors to alter NF-κB activity or they can enhance responses induced by pathogen-associated molecules such as LPS. Nucleotides have also been shown to regulate the activity of other transcription factors (AP-1, NFAT, CREB and STAT) in immune and related cell types. Here, we provide an overview of transcription factors shown to be activated by nucleotides in immune cells, and describe what is known about their mechanisms of activation and potential functions. Furthermore, we propose areas for future work in this new and expanding field
Missing value imputation for microarray gene expression data using histone acetylation information
<p>Abstract</p> <p>Background</p> <p>It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages.</p> <p>Results</p> <p>The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method) is presented. It incorporates the histone acetylation information into the conventional KNN(<it>k</it>-nearest neighbor) and LLS(local least square) imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE). Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information.</p> <p>Conclusion</p> <p>We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.</p
On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter
International audienceBACKGROUND: Gene promoters can be in various epigenetic states and undergo interactions with many molecules in a highly transient, probabilistic and combinatorial way, resulting in a complex global dynamics as observed experimentally. However, models of stochastic gene expression commonly consider promoter activity as a two-state on/off system. We consider here a model of single-gene stochastic expression that can represent arbitrary prokaryotic or eukaryotic promoters, based on the combinatorial interplay between molecules and epigenetic factors, including energy-dependent remodeling and enzymatic activities. RESULTS: We show that, considering the mere molecular interplay at the promoter, a single-gene can demonstrate an elaborate spontaneous stochastic activity (eg. multi-periodic multi-relaxation dynamics), similar to what is known to occur at the gene-network level. Characterizing this generic model with indicators of dynamic and steady-state properties (including power spectra and distributions), we reveal the potential activity of any promoter and its influence on gene expression. In particular, we can reproduce, based on biologically relevant mechanisms, the strongly periodic patterns of promoter occupancy by transcription factors (TF) and chromatin remodeling as observed experimentally on eukaryotic promoters. Moreover, we link several of its characteristics to properties of the underlying biochemical system. The model can also be used to identify behaviors of interest (eg. stochasticity induced by high TF concentration) on minimal systems and to test their relevance in larger and more realistic systems. We finally show that TF concentrations can regulate many aspects of the stochastic activity with a considerable flexibility and complexity. CONCLUSIONS: This tight promoter-mediated control of stochasticity may constitute a powerful asset for the cell. Remarkably, a strongly periodic activity that demonstrates a complex TF concentration-dependent control is obtained when molecular interactions have typical characteristics observed on eukaryotic promoters (high mobility, functional redundancy, many alternate states/pathways). We also show that this regime results in a direct and indirect energetic cost. Finally, this model can constitute a framework for unifying various experimental approaches. Collectively, our results show that a gene - the basic building block of complex regulatory networks - can itself demonstrate a significantly complex behavior
Ultra-wide bandwidth backscatter modulation: processing schemes and performance
Future advanced radio-frequency identification (RFID) systems are expected to provide both identification and high-definition localization of objects with improved reliability and security while maintaining low power consumption and cost. Ultrawide bandwidth (UWB) technology is a promising solution for next generation RFID systems to overcome most of the limitations of current narrow bandwidth RFID technology, such as reduced area coverage, insufficient ranging resolution for accurate localization, sensitivity to interference, and scarce multiple access capability. In this article, the UWB technology is applied to passive RFID relying on backscatter modulation. A signaling structure with clutter and interference suppression capability is proposed and analyzed. The potential performance is investigated in terms of range/data rate trade-off, clutter suppression, and multiple access capability using experimental data obtained in both the controlled and realistic environments