174 research outputs found

    RIG-I contributes to the innate immune response after cerebral ischemia

    Get PDF
    BACKGROUND: Focal cerebral ischemia induces an inflammatory response that when exacerbated contributes to deleterious outcomes. The molecular basis regarding the regulation of the innate immune response after focal cerebral ischemia remains poorly understood. METHODS: In this study we examined the expression of retinoic acid-inducible gene (RIG)-like receptor-I (RIG-I) and its involvement in regulating inflammation after ischemia in the brain of rats subjected to middle cerebral artery occlusion (MCAO). In addition, we studied the regulation of RIG-I after oxygen glucose deprivation (OGD) in astrocytes in culture. RESULTS: In this study we show that in the hippocampus of rats, RIG-I and IFN-α are elevated after MCAO. Consistent with these results was an increased in RIG-I and IFN-α after OGD in astrocytes in culture. These data are consistent with immunohistochemical analysis of hippocampal sections, indicating that in GFAP-positive cells there was an increase in RIG-I after MCAO. In addition, in this study we have identified n-propyl gallate as an inhibitor of IFN-α signaling in astrocytes. CONCLUSION: Our findings suggest a role for RIG-I in contributing to the innate immune response after focal cerebral ischemia

    All-sky visible and near infrared space astrometry

    Get PDF
    The era of all-sky space astrometry began with the Hipparcos mission in 1989 and provided the first very accurate catalogue of apparent magnitudes, positions, parallaxes and proper motions of 120 000 bright stars at the milliarcsec (or milliarcsec per year) accuracy level. Hipparcos has now been superseded by the results of the Gaia mission. The second Gaia data release contained astrometric data for almost 1.7 billion sources with tens of microarcsec (or microarcsec per year) accuracy in a vast volume of the Milky Way and future data releases will further improve on this. Gaia has just completed its nominal 5-year mission (July 2019), but is expected to continue in operations for an extended period of an additional 5 years through to mid 2024. Its final catalogue to be released ∌ 2027, will provide astrometry for ∌ 2 billion sources, with astrometric precisions reaching 10 microarcsec. Why is accurate astrometry so important? The answer is that it provides fundamental data which underpin much of modern observational astronomy as will be detailed in this White Paper. All-sky visible and Near-InfraRed (NIR) astrometry with a wavelength cutoff in the K-band is not just focused on a single or small number of key science cases. Instead, it is extremely broad, answering key science questions in nearly every branch of astronomy while also providing a dense and accurate visible-NIR reference frame needed for future astronomy facilities

    Ultra-Efficient PrPSc Amplification Highlights Potentialities and Pitfalls of PMCA Technology

    Get PDF
    In order to investigate the potential of voles to reproduce in vitro the efficiency of prion replication previously observed in vivo, we seeded protein misfolding cyclic amplification (PMCA) reactions with either rodent-adapted Transmissible Spongiform Encephalopathy (TSE) strains or natural TSE isolates. Vole brain homogenates were shown to be a powerful substrate for both homologous or heterologous PMCA, sustaining the efficient amplification of prions from all the prion sources tested. However, after a few serial automated PMCA (saPMCA) rounds, we also observed the appearance of PK-resistant PrPSc in samples containing exclusively unseeded substrate (negative controls), suggesting the possible spontaneous generation of infectious prions during PMCA reactions. As we could not definitively rule out cross-contamination through a posteriori biochemical and biological analyses of de novo generated prions, we decided to replicate the experiments in a different laboratory. Under rigorous prion-free conditions, we did not observe de novo appearance of PrPSc in unseeded samples of M109M and I109I vole substrates, even after many consecutive rounds of saPMCA and working in different PMCA settings. Furthermore, when positive and negative samples were processed together, the appearance of spurious PrPSc in unseeded negative controls suggested that the most likely explanation for the appearance of de novo PrPSc was the occurrence of cross-contamination during saPMCA. Careful analysis of the PMCA process allowed us to identify critical points which are potentially responsible for contamination events. Appropriate technical improvements made it possible to overcome PMCA pitfalls, allowing PrPSc to be reliably amplified up to extremely low dilutions of infected brain homogenate without any false positive results even after many consecutive rounds. Our findings underline the potential drawback of ultrasensitive in vitro prion replication and warn on cautious interpretation when assessing the spontaneous appearance of prions in vitro

    Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury

    Get PDF
    Pannexin1 (Panx1) forms large nonselective membrane channel that is implicated in paracrine and inflammatory signaling. In vitro experiments suggested that Panx1 could play a key role in ischemic death of hippocampal neurons. Since retinal ganglion cells (RGCs) express high levels of Panx1 and are susceptible to ischemic induced injury, we hypothesized that Panx1 contributes to rapid and selective loss of these neurons in ischemia. To test this hypothesis, we induced experimental retinal ischemia followed by reperfusion in live animals with the Panx1 channel genetically ablated either in the entire mouse (Panx1 KO), or only in neurons using the conditional knockout (Panx1 CKO) technology. Here we report that two distinct neurotoxic processes are induced in RGCs by ischemia in the wild type mice but are inactivated in Panx1KO and Panx1 CKO animals. First, the post-ischemic permeation of RGC plasma membranes is suppressed, as assessed by dye transfer and calcium imaging assays ex vivo and in vitro. Second, the inflammasome-mediated activation of caspase-1 and the production of interleukin-1ÎČ in the Panx1 KO retinas are inhibited. Our findings indicate that post-ischemic neurotoxicity in the retina is mediated by previously uncharacterized pathways, which involve neuronal Panx1 and are intrinsic to RGCs. Thus, our work presents the in vivo evidence for neurotoxicity elicited by neuronal Panx1, and identifies this channel as a new therapeutic target in ischemic pathologies

    An overview of animal prion diseases

    Get PDF
    Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases

    The Functions of Auxilin and Rab11 in Drosophila Suggest That the Fundamental Role of Ligand Endocytosis in Notch Signaling Cells Is Not Recycling

    Get PDF
    Notch signaling requires ligand internalization by the signal sending cells. Two endocytic proteins, epsin and auxilin, are essential for ligand internalization and signaling. Epsin promotes clathrin-coated vesicle formation, and auxilin uncoats clathrin from newly internalized vesicles. Two hypotheses have been advanced to explain the requirement for ligand endocytosis. One idea is that after ligand/receptor binding, ligand endocytosis leads to receptor activation by pulling on the receptor, which either exposes a cleavage site on the extracellular domain, or dissociates two receptor subunits. Alternatively, ligand internalization prior to receptor binding, followed by trafficking through an endosomal pathway and recycling to the plasma membrane may enable ligand activation. Activation could mean ligand modification or ligand transcytosis to a membrane environment conducive to signaling. A key piece of evidence supporting the recycling model is the requirement in signaling cells for Rab11, which encodes a GTPase critical for endosomal recycling. Here, we use Drosophila Rab11 and auxilin mutants to test the ligand recycling hypothesis. First, we find that Rab11 is dispensable for several Notch signaling events in the eye disc. Second, we find that Drosophila female germline cells, the one cell type known to signal without clathrin, also do not require auxilin to signal. Third, we find that much of the requirement for auxilin in Notch signaling was bypassed by overexpression of both clathrin heavy chain and epsin. Thus, the main role of auxilin in Notch signaling is not to produce uncoated ligand-containing vesicles, but to maintain the pool of free clathrin. Taken together, these results argue strongly that at least in some cell types, the primary function of Notch ligand endocytosis is not for ligand recycling
    • 

    corecore