141 research outputs found

    Introgression of a major QTL from an inferior into a superior population using genomic selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selection schemes aiming at introgressing genetic material from a donor into a recipient line may be performed by backcross-breeding programs combined with selection to preserve the favourable characteristics of the donor population. This stochastic simulation study investigated whether genomic selection can be effective in preserving a major quantitative trait locus (QTL) allele from a donor line during the backcrossing phase.</p> <p>Methods</p> <p>In a simulation study, two fish populations were generated: a recipient line selected for a production trait and a donor line characterized by an enhanced level of disease resistance. Both traits were polygenic, but one major QTL affecting disease resistance was segregating only within the donor line. Backcrossing was combined with three types of selection (for total merit index) among the crossbred individuals: classical selection, genomic selection using genome-wide dense marker maps, and gene-assisted genomic selection. It was assumed that production could be observed directly on the selection candidates, while disease resistance had to be inferred from tested sibs of the selection candidates.</p> <p>Results</p> <p>Classical selection was inefficient in preserving the target QTL through the backcrossing phase. In contrast, genomic selection (without specific knowledge of the target QTL) was usually effective in preserving the target QTL, and had higher genetic response to selection, especially for disease resistance. Compared with pure genomic selection, gene-assisted selection had an advantage with respect to disease resistance (28–40% increase in genetic gain) and acted as an extra precaution against loss of the target QTL. However, for total merit index the advantage of gene-assisted genomic selection over genomic selection was lower (4–5% increase in genetic gain).</p> <p>Conclusion</p> <p>Substantial differences between introgression programs using classical and genomic selection were observed, and the former was generally inferior with respect to both genetic gain and the ability to preserve the target QTL. Combining genomic selection with gene-assisted selection for the target QTL acted as an extra precaution against loss of the target QTL and gave additional genetic gain for disease resistance. However, the effect on total merit index was limited.</p

    Accuracy of breeding values of 'unrelated' individuals predicted by dense SNP genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments in SNP discovery and high throughput genotyping technology have made the use of high-density SNP markers to predict breeding values feasible. This involves estimation of the SNP effects in a training data set, and use of these estimates to evaluate the breeding values of other 'evaluation' individuals. Simulation studies have shown that these predictions of breeding values can be accurate, when training and evaluation individuals are (closely) related. However, many general applications of genomic selection require the prediction of breeding values of 'unrelated' individuals, i.e. individuals from the same population, but not particularly closely related to the training individuals.</p> <p>Methods</p> <p>Accuracy of selection was investigated by computer simulation of small populations. Using scaling arguments, the results were extended to different populations, training data sets and genome sizes, and different trait heritabilities.</p> <p>Results</p> <p>Prediction of breeding values of unrelated individuals required a substantially higher marker density and number of training records than when prediction individuals were offspring of training individuals. However, when the number of records was 2*N<sub>e</sub>*L and the number of markers was 10*N<sub>e</sub>*L, the breeding values of unrelated individuals could be predicted with accuracies of 0.88 – 0.93, where N<sub>e </sub>is the effective population size and L the genome size in Morgan. Reducing this requirement to 1*N<sub>e</sub>*L individuals, reduced prediction accuracies to 0.73–0.83.</p> <p>Conclusion</p> <p>For livestock populations, 1N<sub>e</sub>L requires about ~30,000 training records, but this may be reduced if training and evaluation animals are related. A prediction equation is presented, that predicts accuracy when training and evaluation individuals are related. For humans, 1N<sub>e</sub>L requires ~350,000 individuals, which means that human disease risk prediction is possible only for diseases that are determined by a limited number of genes. Otherwise, genotyping and phenotypic recording need to become very common in the future.</p

    Pain, psychological distress and health-related quality of life at baseline and 3 months after radical prostatectomy

    Get PDF
    BACKGROUND: Inadequate management of postoperative pain is common, and postoperative pain is a risk factor for prolonged pain. In addition to medical and technical factors, psychological factors may also influence the experience of postoperative pain. METHODS: Pain was measured postoperatively at 24, 48, and 72 hr in hospital and after 3 months at home in 140 patients undergoing radical prostatectomy (RP). Patients answered questionnaires about anxiety and depression (HAD scale) and health-related quality of life (SF-36) at baseline and 3 months after surgery. RESULTS: In the first 3 postoperative days, mild pain was reported by 45 patients (32%), moderate pain by 64 (45%), and severe pain by 31 (22%) on one or more days. High postoperative pain scores were correlated with length of hospital stay and with high pain scores at home. Forty patients (29%) reported moderate (n = 35) or severe (n = 5) pain after discharge from hospital. Patients who experienced anxiety and depression preoperatively had higher postoperative pain scores and remained anxious and depressed 3 months after surgery. The scores for the physical domains in the SF-36 were decreased, while the mental health scores were increased at 3 months. Anxiety and depression were negatively correlated with all domains of the SF-36. CONCLUSION: There is a need for nurses to be aware of the psychological status of RP patients and its impact upon patients' experience of postoperative pain and recovery. The ability to identify patients with psychological distress and to target interventions is an important goal for future research

    Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance

    Get PDF
    The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV

    High-resolution haplotype block structure in the cattle genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use.</p> <p>Results</p> <p>From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1–100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure.</p> <p>Conclusion</p> <p>This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1–100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in <it>Bos taurus </it>breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.</p

    Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chicken (<it>Gallus gallus</it>), like most avian species, has a very distinct karyotype consisting of many micro- and a few macrochromosomes. While it is known that recombination frequencies are much higher for micro- as compared to macrochromosomes, there is limited information on differences in linkage disequilibrium (LD) and haplotype diversity between these two classes of chromosomes. In this study, LD and haplotype diversity were systematically characterized in 371 birds from eight chicken populations (commercial lines, fancy breeds, and red jungle fowl) across macro- and microchromosomes. To this end we sampled four regions of ~1 cM each on macrochromosomes (GGA1 and GGA2), and four 1.5 -2 cM regions on microchromosomes (GGA26 and GGA27) at a high density of 1 SNP every 2 kb (total of 889 SNPs).</p> <p>Results</p> <p>At a similar physical distance, LD, haplotype homozygosity, haploblock structure, and haplotype sharing were all lower for the micro- as compared to the macrochromosomes. These differences were consistent across populations. Heterozygosity, genetic differentiation, and derived allele frequencies were also higher for the microchromosomes. Differences in LD, haplotype variation, and haplotype sharing between populations were largely in line with known demographic history of the commercial chicken. Despite very low levels of LD, as measured by r<sup>2 </sup>for most populations, some haploblock structure was observed, particularly in the macrochromosomes, but the haploblock sizes were typically less than 10 kb.</p> <p>Conclusion</p> <p>Differences in LD between micro- and macrochromosomes were almost completely explained by differences in recombination rate. Differences in haplotype diversity and haplotype sharing between micro- and macrochromosomes were explained by differences in recombination rate and genotype variation. Haploblock structure was consistent with demography of the chicken populations, and differences in recombination rates between micro- and macrochromosomes. The limited haploblock structure and LD suggests that future whole-genome marker assays will need 100+K SNPs to exploit haplotype information. Interpretation and transferability of genetic parameters will need to take into account the size of chromosomes in chicken, and, since most birds have microchromosomes, in other avian species as well.</p

    Autonomic and muscular responses and recovery to one-hour laboratory mental stress in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stress is a risk factor for musculoskeletal pain. We wanted to explore stress related physiology in healthy subjects in order to gain insight into mechanisms of pain development which may relate to the pathophysiology of musculoskeletal pain disorders.</p> <p>Methods</p> <p>Continuous blood pressure, heart rate, finger skin blood flow, respiration, surface electromyography together with perception of pain, fatigue and tension were recorded on 35 healthy women and 9 healthy men before, during a 60 minute period with task-related low-grade mental stress, and in the following 30 minute rest period.</p> <p>Results</p> <p>Subjects responded physiologically to the stressful task with an increase in trapezius and frontalis muscle activity, increased blood pressure, respiration frequency and heart rate together with reduced finger skin blood flow. The blood pressure response and the finger skin blood flow response did not recover to baseline values during the 30-minute rest period, whereas respiration frequency, heart rate, and surface electromyography of the trapezius and frontalis muscles recovered to baseline within 10 minutes after the stressful task. Sixty-eight percent responded subjectively with pain development and 64% reported at least 30% increase in pain. Reduced recovery of the blood pressure was weakly correlated to fatigue development during stress, but was not correlated to pain or tension.</p> <p>Conclusion</p> <p>Based on a lack of recovery of the blood pressure and the acral finger skin blood flow response to mental stress we conclude that these responses are more protracted than other physiological stress responses.</p
    corecore