2,491 research outputs found

    BPS black holes, the Hesse potential, and the topological string

    Full text link
    The Hesse potential is constructed for a class of four-dimensional N=2 supersymmetric effective actions with S- and T-duality by performing the relevant Legendre transform by iteration. It is a function of fields that transform under duality according to an arithmetic subgroup of the classical dualities reflecting the monodromies of the underlying string compactification. These transformations are not subject to corrections, unlike the transformations of the fields that appear in the effective action which are affected by the presence of higher-derivative couplings. The class of actions that are considered includes those of the FHSV and the STU model. We also consider heterotic N=4 supersymmetric compactifications. The Hesse potential, which is equal to the free energy function for BPS black holes, is manifestly duality invariant. Generically it can be expanded in terms of powers of the modulus that represents the inverse topological string coupling constant, gsg_s, and its complex conjugate. The terms depending holomorphically on gsg_s are expected to correspond to the topological string partition function and this expectation is explicitly verified in two cases. Terms proportional to mixed powers of gsg_s and gˉs\bar g_s are in principle present.Comment: 28 pages, LaTeX, added comment

    Functional deficits induced by cortical microinfarcts

    Get PDF
    published_or_final_versio

    A bioassay system of autologous human endothelial, smooth muscle cells and leucocytes for use in drug discovery, phenotyping and tissue engineering

    Get PDF
    Purpose: Blood vessels are comprised of endothelial and smooth muscle cells. Obtaining both types of cells from vessels of living donors is not possible without invasive surgery. To address this we have devised a strategy whereby human endothelial and smooth muscle cells derived from blood progenitors from the same donor could be cultured with autologous leucocytes to generate a same donor ‘vessel in a dish’ bioassay. Basic procedures: Autologous sets of blood outgrowth endothelial cells (BOECs), smooth muscle cells (BO-SMCs) and leucocytes were obtained from 4 donors. Cells were treated in mono and cumulative co-culture conditions. The endothelial specific mediator endothelin-1 along with interleukin (IL)-6, IL-8, tumour necrosis factor α, and interferon gamma-induced protein 10 were measured under control culture conditions and after stimulation with cytokines. Main findings: Co-cultures remained viable throughout. The profile of individual mediators released from cells was consistent with what we know of endothelial and smooth muscle cells cultured from blood vessels. Principle conclusions: For the first time, we report a proof of concept study where autologous blood outgrowth ‘vascular’ cells and leucocytes were studied alone and in co-culture. This novel bioassay has utility in vascular biology research, patient phenotyping, drug testing and tissue engineering

    Counting all dyons in N =4 string theory

    Get PDF
    For dyons in heterotic string theory compactified on a six-torus, with electric charge vector Q and magnetic charge vector P, the positive integer I = g.c.d.(Q \wedge P) is an invariant of the U-duality group. We propose the microscopic theory for computing the spectrum of all dyons for all values of I, generalizing earlier results that exist only for the simplest case of I=1. Our derivation uses a combination of arguments from duality, 4d-5d lift, and a careful analysis of fermionic zero modes. The resulting degeneracy agrees with the black hole degeneracy for large charges and with the degeneracy of field-theory dyons for small charges. It naturally satisfies several physical requirements including integrality and duality invariance. As a byproduct, we also derive the microscopic (0,4) superconformal field theory relevant for computing the spectrum of five-dimensional Strominger-Vafa black holes in ALE backgrounds and count the resulting degeneracies

    Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

    Full text link
    In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. We explore the capabilities of a recovery technique based on an enhanced MLS fitting, which directly provides continuous interpolated fields, to obtain estimates of the error in energy norm as an alternative to the superconvergent patch recovery (SPR). Boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results show the high accuracy of the proposed error estimator

    Development of a novel UPLC-MS/MS-based platform to quantify amines, amino acids and methylarginines for applications in human disease phenotyping

    Get PDF
    Amine quantification is an important strategy in patient stratification and personalised medicine. This is because amines, including amino acids and methylarginines impact on many homeostatic processes. One important pathway regulated by amine levels is nitric oxide synthase (NOS). NOS is regulated by levels of (i) the substrate, arginine, (ii) amino acids which cycle with arginine and (iii) methylarginine inhibitors of NOS. However, biomarker research in this area is hindered by the lack of a unified analytical platform. Thus, the development of a common metabolomics platform, where a wide range of amino acids and methylarginines can be measured constitutes an important unmet need. Here we report a novel high-throughput ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) platform where ≈40 amine analytes, including arginine and methylarginines can be detected and quantified on a molar basis, in a single sample of human plasma. To validate the platform and to generate biomarkers, human plasma from a well-defined cohort of patients before and after coronary artery bypass surgery, who developed systemic inflammatory response syndrome (SIRS), were analysed. Bypass surgery with SIRS significantly altered 26 amine analytes, including arginine and ADMA. Consequently, pathway analysis revealed significant changes in a range of pathways including those associated with NOS

    Condensate cosmology in O'Raifeartaigh models

    Full text link
    Flat directions charged under an R-symmetry are a generic feature of O'Raifeartaigh models. Non-topological solitons associated with this symmetry, R-balls, are likely to form through the fragmentation of a condensate, itself created by soft terms induced during inflation. In gravity mediated SUSY breaking R-balls decay to gravitinos, reheating the universe. For gauge mediation R-balls can provide a good dark matter candidate. Alternatively they can decay, either reheating or cooling the universe. Conserved R-symmetry permits decay to gravitinos or gauginos, whereas spontaneously broken R-symmetry results in decay to visible sector gauge bosons.Comment: 29 pages, 5 figures. Comments and references added, accepted for publication in JHE

    Long-Lived Neutralino NLSPs

    Full text link
    We investigate the collider signatures of heavy, long-lived, neutral particles that decay to charged particles plus missing energy. Specifically, we focus on the case of a neutralino NLSP decaying to Z and gravitino within the context of General Gauge Mediation. We show that a combination of searches using the inner detector and the muon spectrometer yields a wide range of potential early LHC discoveries for NLSP lifetimes ranging from 10^(-1)-10^5 mm. We further show that events from Z(l+l-) can be used for detailed kinematic reconstruction, leading to accurate determinations of the neutralino mass and lifetime. In particular, we examine the prospects for detailed event study at ATLAS using the ECAL (making use of its timing and pointing capabilities) together with the TRT, or using the muon spectrometer alone. Finally, we also demonstrate that there is a region in parameter space where the Tevatron could potentially discover new physics in the delayed Z(l+l-)+MET channel. While our discussion centers on gauge mediation, many of the results apply to any scenario with a long-lived neutral particle decaying to charged particles.Comment: 31 pages, 12 figure

    General Gauge Mediation at the Weak Scale

    Get PDF
    We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to mhm_h coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.Comment: 43 pages, 20 figures, mathematica package included in the sourc

    Prompt Decays of General Neutralino NLSPs at the Tevatron

    Full text link
    Recent theoretical developments have shown that gauge mediation has a much larger parameter space of possible spectra and mixings than previously considered. Motivated by this, we explore the collider phenomenology of gauge mediation models where a general neutralino is the lightest MSSM superpartner (the NLSP), focusing on the potential reach from existing and future Tevatron searches. Promptly decaying general neutralino NLSPs can give rise to final states involving missing energy plus photons, Zs, Ws and/or Higgses. We survey the final states and determine those where the Tevatron should have the most sensitivity. We then estimate the reach of existing Tevatron searches in these final states and discuss new searches (or optimizations of existing ones) that should improve the reach. Finally we comment on the potential for discovery at the LHC.Comment: 41 pages, minor changes, added refs and discussion of previous literatur
    corecore