
Title Functional deficits induced by cortical microinfarcts

Author(s) Summers, PM; Hartmann, DA; Hui, SK; Nie, X; Deardorff, RL;
McKinnon, ET; Helpern, JA; Jensen, JH; Shih, AY

Citation Journal of Cerebral Blood Flow & Metabolism, 2017

Issued Date 2017

URL http://hdl.handle.net/10722/238647

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/80971158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Original Article

Functional deficits induced
by cortical microinfarcts

Philipp M Summers1, David A Hartmann1, Edward S Hui2,
Xingju Nie3,4, Rachael L Deardorff3,4, Emilie T McKinnon3,4,
Joseph A Helpern1,3,4, Jens H Jensen3,4 and Andy Y Shih1,4

Abstract

Clinical studies have revealed a strong link between increased burden of cerebral microinfarcts and risk for cognitive

impairment. Since the sum of tissue damage incurred by microinfarcts is a miniscule percentage of total brain volume, we

hypothesized that microinfarcts disrupt brain function beyond the injury site visible to histological or radiological exam-

ination. We tested this idea using a mouse model of microinfarcts, where single penetrating vessels that supply mouse

cortex were occluded by targeted photothrombosis. We found that in vivo structural and diffusion MRI reliably reported

the acute microinfarct core, based on spatial co-registrations with post-mortem stains of neuronal viability. Consistent

with our hypothesis, c-Fos assays for neuronal activity and in vivo imaging of single vessel hemodynamics both reported

functional deficits in viable peri-lesional tissues beyond the microinfarct core. We estimated that the volume of tissue

with functional deficit in cortex was at least 12-fold greater than the volume of the microinfarct core. Impaired hemo-

dynamic responses in peri-lesional tissues persisted at least 14 days, and were attributed to lasting deficits in neuronal

circuitry or neurovascular coupling. These data show how individually miniscule microinfarcts could contribute to

broader brain dysfunction during vascular cognitive impairment and dementia.
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Introduction

Overwhelming evidence has linked cerebrovascular dis-
ease to cognitive decline.1,2 Microinfarcts, foci of neur-
onal loss that are �0.05 to 3mm in diameter, are
believed to be an important factor in this linkage.3–5

Collectively, post-mortem histological and in vivo
radiological investigations have shown that microin-
farct burden is greater in individuals with vascular
cognitive impairment and dementia (VCID) compared
to age-matched, non-demented controls.4,6–10

Microinfarcts are thought to result from loss of blood
flow through cerebral penetrating or perforating arteri-
oles, as evidenced by preclinical studies that perturb
small vessel flow,11–14 and by a greater incidence of
microinfarcts in individuals with cerebrovascular dis-
eases such as atherosclerosis, arteriolosclerosis, and
cerebral amyloid angiopathy (CAA).15–17

With an established link between microinfarcts and
VCID, the field now seeks to identify the mechanisms

by which such miniscule lesions could contribute to cog-
nitive deficits. Recent studies have suggested that the
observation of a few microinfarcts during neuropathol-
ogy18 or MRI19 may correspond to hundreds, possibly
thousands, that go undetected throughout the brain due
to limited tissue sampling or low sensitivity during clin-
ical imaging. However, a reportedly heavy burden of
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average-sized microinfarcts (5000 spherical lesions of
1mm diameter) sums to 2.6mL of tissue lost to micro-
infarction. This generous estimate suggests that micro-
infarcts affect only 2% or less of the human brain
volume, and does not appear to fully explain howmicro-
infarcts could contribute to brain dysfunction. An
important consideration is that this estimated tissue
loss is based on the ‘‘core’’ of the microinfarct, a region
of dead or dying tissue that exhibits pallor, neuronal loss,
and microgliosis in routine histological stains.20 We
therefore hypothesized that microinfarcts could disrupt
brain function beyond their nonviable cores.4

Although our understanding of the structural charac-
teristics of microinfarcts has progressed, the functional
impact of microinfarcts remains enigmatic for several
reasons: (1) most microinfarcts are too small to be
detected by clinical neuroimaging modalities,21 (2)
there is nomeans to assess functional impairments along-
side measurements of tissue structure during post-
mortem examination of human tissues, and (3) microin-
farcts occur in parallel with other disease factors, i.e.
Alzheimer’s disease, large-scale stroke, and aging, that
cause brain dysfunction through mechanisms independ-
ent from microinfarcts.6 To circumvent these issues, we
examined the functionality of tissues surrounding single
microinfarcts induced in the brains of normal adultmice.
Microinfarcts were induced by selectively occluding
single cortical penetrating arterioles through a cranial
window using focal photothrombosis.11,22We then com-
pared functional readouts of sensory-evoked brain activ-
ity, obtained by measuring activity-dependent c-Fos
expression or in vivo two-photon imaging of single
vessel hemodynamic responses, to the location of the
microinfarct core. Our findings suggest that microin-
farcts induce lasting functional impairments that
extend well beyond the core, uncovering an invisible
facet of microinfarct pathology that may contribute to
the development of VCID.

Materials and methods

The Institutional Animal Care and Use Committee at
the Medical University of South Carolina approved the
procedures used in this study. The University has
accreditation from the Association for Assessment
and Accreditation of Laboratory Animal Care
International, and all experiments were performed
within its guidelines. All data were analyzed and
reported according to ARRIVE guidelines.

Animals and surgery

Reagents were obtained from Sigma-Aldrich unless
otherwise noted. We used male mice ranging three to
six months of age for all experiments. Heterozygous

CX3CR1GFP/þ mice (bred on C57BL/6 background)
were used in all MRI studies (Figures 1 to 3 and 8)
(Jackson Laboratories #005582), which was useful for
identification of resident microglia and infiltrating
monocytes during histology. Heterozygous Thy1-YFP-
Hmicewere used tovisualize dendritic spines on layer 2/3
neurons (Figure 5) (Jackson Laboratories #003782).
Pure C57BL/6 mice were used for data presented in all
other figures (Jackson Laboratories #000664).

Animals were maintained in standard cages on a 12-h
light-dark cycle and normal mouse chow diet. For cra-
nial window and head-mount implantation, anesthesia
was induced with isoflurane (Patterson Veterinary) at
4% mean alveolar concentration (MAC) in 100%
oxygen and maintained at 1 to 2% MAC during sur-
gery.23 Body temperature was maintained at 37�C with
a feedback-regulated heat pad (FHC). PoRTs windows
were generated over the left cerebral hemisphere to gain
optical access to the sensorimotor cortex,23,24 under the
guidance of a stereoscope (SXZ10; Olympus). An alumi-
num flange (or plastic flange for MRI studies) was
cemented onto the contralateral hemisphere of the
dorsal skull surface to enable head fixation during ima-
ging. Buprenorphinewas provided prior to the surgery at
a concentration of 0.05mg/kg for analgesia.

In vivo two-photon imaging

Imaging was performed with a Sutter Moveable
Objective Microscope and a Coherent Ultra II
Ti:Sapphire laser source. Our procedures for in vivo
two-photon imaging have been described in detail
previously.22,23

Since isoflurane dampens the hemodynamic response
(Supplementary Figure 1),25 studies of functionally
evoked hemodynamics were performed on awake mice
habituated to head-fixation, as previously described.26

Mice were briefly anesthetized with 4%MAC isoflurane
for an infraorbital vein injection of 2MDa fluorescein-
dextran (FD2000S; Sigma-Aldrich) prepared at a con-
centration of 5% (w/v) in sterile saline. They were then
awoken and allowed to stabilize for 30 min prior to two-
photon imaging. Movies encompassing 312 by 244 mm
areas of the pial surface were collected at a frame rate
of 4Hz (800 nm excitation). The diameter of arterioles
was quantified offline using full-width-at-half-maximum
calculations of the fluorescence intensity profile across
the vessel width.26

Whisker stimulation protocol

Whisker stimulation was performed while mice were
awake and head-fixed under the microscope objective.26

The stimulation protocol comprised air puffs (8Hz, 20ms
pulse, 10 s pulse train, 35p.s.i. from air tank) directed at
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themystacial pad contralateral to the hemisphere with the
imaging window. The air was guided through a 200mL
plastic pipette tip (tip diameter¼ 2mm) to focus the air
streamonwhisker rows B toD.The pipette tip was placed
�2 cm from the whiskers. A second air puffer was dir-
ected at the tail as a control for general arousal.
Whisker and tail stimulation trials were presented in
random order during the experiment. Ten trials of each
stimulation type were collected for each imaged location.
Each trial consisted of a 30 s baseline, 10 s stimulation,
and 50 s post-stimulation period. Approximately 25 to
50% of the data was discarded due to motion artifacts
that were detected by shifts from the imaging focal plane.
Movement was also detected using an accelerometer
(ADXL345; Sparkfun) mounted to the restraint
tube. The signal from the accelerometer was
amplified (DAM80, World Precision Instruments) and
collected in an analog channel in parallel withmovie data.

Targeted photothrombotic occlusions
of single penetrating vessels

Focal photothrombotic occlusion of individual cortical
penetrating arterioles or venules was described in detail
previously.22,27 For strategic placement of microin-
farcts (Figures 4, 6, and 7), the primary barrel cortex
was identified stereotaxically or with intrinsic optical
imaging prior to photothrombosis.11

Magnetic resonance imaging

MRI was performed with a 7T BioSpec 70/30 horizontal
scanner (Bruker BioSpin) running Paravision 5.1 software
and equipped with a 12 cm inner diameter actively
shielded gradient system (440mT/m). A quadrature
volume coil (T128038) was used for signal transmission
and a mouse brain array coil (T11765) for signal recep-
tion. Mice were maintained under 1.5% MAC isoflurane
during image acquisition. An animal monitoring unit (SA
instruments, Inc., model 1025) was used to record respir-
ation and rectal temperature. Body temperature was
maintained at 37�C using ventilated warm air, controlled
by a feedback circuit between the heater and thermistor.
Respiration was maintained between 50 and 70 breaths
per minute during scanning. Detailed imaging parameters
for each protocol are provided in Supplemental Materials.

MRI data analysis

The hyperintense regions in the inversion recovery (IR),
T2-weighted, and averaged diffusion weighted
images (b-value 2000 s/mm2) were manually outlined
using MRIcron software (Figures 2, 3, and 8). For
Figure 8, the peri-lesional region of interest (ROI) sur-
rounding the core was extended five voxels (780 mm) in

all directions from the outermost edge of the microin-
farct core. The peri-lesional ROI was drawn to avoid
overlapping with neighboring microinfarcts, tissue
boundaries, or apparent imaging artifacts. A circumfer-
ential boundary of one voxel width between the core
and peri-lesional area (160mm) was excluded to minim-
ize partial volume effects. Both core and peri-lesional
ROIs were drawn on the time-point with the largest
lesion core (typically post-occlusion day 1 or 2).
These same ROIs were then applied to all other time-
points. Mean diffusivity and mean kurtosis (MK)
values were calculated with diffusional kurtosis estima-
tor (http://www.nitrc.org/projects/dke/).28

Immunohistology

For data of Figure 2, animals were sacrificed for histo-
logical examination at nine days post-occlusion. For
data of Figure 3, animals were sacrificed at 24 h post-
occlusion. All animals were perfusion fixed with 4%
paraformaldehyde (PFA) in PBS through a trans-
cardiac route.22 After overnight fixation in 4% PFA in
PBS, the whole brain was then mounted for vibratome
sectioning such that it could be sliced tangential to the
cortical surface at the location of the microinfarcts.
Brain sections were collected at a thickness of 50 mm.

Immunostaining was performed as described previ-
ously,22 with the following antibody combinations: (i)
anti-NeuN primary antibody from guinea pig host
(ABN90P; 1:1000 dilution; Millipore), followed by
Alexa 594 secondary antibody (A11076, 1:1000 dilu-
tion; ThermoFisher) or DyLight 405 secondary anti-
body (106-475-003, 1:500 dilution; Jackson
Immunoresearch), and (ii) anti-GFAP primary anti-
body from rabbit host (04-1062, 1:1000 dilution;
Millipore) followed by Alexa 594 secondary antibody
(A31632, 1:1000 dilution; ThermoFisher). Tissues were
mounted on slides and briefly allowed to dry. The slides
were then coverslip sealed with Fluoromount G.
Fluorescence images were collected with an epi-fluores-
cence microscope (BX53; Olympus). Microinfarct areas
were quantified from anti-NeuN stained tissue sections
(Figure 3(c)). The microinfarct core was delineated as
the border between normal tissue exhibiting dense neur-
onal nuclei and infarcted regions devoid of nuclei.

For c-Fos studies in Figure 4 and Supplementary
Figure 2, mice received air puffs to the whiskers when
awake as described above, but for a prolonged period of
20min.29 Mice were then sacrificed and perfusion fixed
75min after stimulation. Cortices were flattened in
order to visualize all barrels of layer 4 in a single slice.
Brains were cut down the midline and the subcortical
tissues (but not hippocampus) were carefully removed
with forceps. The ventral 1/3 of the cortex was cut off so
that the convex shape of the isolated cortex did not lead
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to tissue distortion during the flattening process. The
cortex was then flattened between two microscope
slides, separated by 1.5mm divider at either end of the
slides. The slides were submerged in 4% PFA in PBS
overnight. The post-fixed tissue was sliced into 50-mm
thick sections parallel to the cortical surface using a
vibratome. Consistent with minimal tissue stretching,
the dimensions of major barrel columns such as C2
(150–200 mm in the minor axis and 300–350 mm in the
major axis; Supplementary Figure 3) were consistent
with the dimension of barrel columns measured in
past studies in which mouse cortex was not flattened.30

Immunohistochemistry for c-Fos studies was per-
formed with anti-c-Fos primary antibody from rabbit
host (sc-52; 1:500 dilution; Santa Cruz Biotech), anti-
NeuN primary antibody from mouse host (MAB339;
1:500; Millipore), and anti-VGlut2 primary antibody
from guinea pig host (AF1042; 1:5,000 dilution; R&D
Systems;). Secondary antibodies consisted of anti-rabbit
Alexa 594 (A11076; 1:1,000 dilution; ThermoFisher),
anti-guinea pig Alexa 488 (A31268; 1:1,000 dilution;
ThermoFisher), and anti-mouse Alexa 350 (A21049:
1:1000 dilution; ThermoFisher). The ImageJ plugin
ITCN (image-based tool for counting nuclei) was used
to count c-Fos-positive or NeuN-positive cells from
fluorescence images collected (Figure 4 and
Supplementary Figures 2 and 4). Methods for analysis
of synaptophysin immunostaining and dendritic spine
density are provided in Supplemental Materials.

Statistical analysis

All statistical analyses were performed with
MATLAB or Graphpad Prism software. Alpha-level
for all tests was set a 0.05. Details for statistical outcomes
can be found in the corresponding legend for each figure.

Experimental design

Animals were assigned to experimental groups with no
bias and by different experimenters. Data analysis was
not performed in a blinded fashion (except with
spine counting), but results were not subjective since ana-
lysis protocols were largely automated, i.e. with Matlab
or ImageJ code to calculate arteriole diameter or cell
number. We did not perform tests to predetermine the
sample size. Our sample size was similar to previously
reported studies using related techniques.11,22,26

Results

Modeling microinfarcts in the mouse cortex

There is strong evidence that microinfarcts are a prod-
uct of vascular obstruction at the level of small

penetrating/perforating arterioles. In particular, the
microinfarct core can harbor the remains of penetrating
vessels with CAA17 and possess histological features
similar to larger ischemic insults.31 We therefore mod-
eled cortical microinfarcts in mice by generating loca-
lized obstructions in penetrating arterioles (Figure 1(a)
to (c); red inset), or penetrating venules (not shown),
under the guidance of in vivo two-photon micros-
copy.11,22 Occlusions were made at the pial surface by
forming localized clots in the target vessel lumen using
focused photothrombotic irradiation.11,22,32 It was pos-
sible to occlude two to three separate penetrating ves-
sels in a 3� 3mm2 cranial window without causing
microinfarcts to overlap in space.

Microinfarcts possessed T2-weighted signal contrast
at 24 h post-onset (Figure 1(d)). They exhibited a
roughly columnar shape and extended from the pial
surface into the cortical gray matter, but rarely reached
the underlying white matter of the external capsule. The
shape, size, and location of these modeled cortical
microinfarcts bore remarkable similarity to a subset
of human microinfarcts captured in recent 7T MRI
studies (Figure 1(e))33 and during neuropathological
examination.17,34,35 The similarity in microinfarct
appearance between mouse and human is due to a rela-
tively conserved cortical vascular scale between species,
despite a large difference in brain size. That is, the
mouse cortex is a ‘‘cropped’’ rather than ‘‘scaled’’ ver-
sion of the human cortex. For example, the thickness of
cerebral cortex is 1 to 2mm for mice36 and 2.8 to
3.5mm for humans.37 Penetrating arteriole irrigation
territories span a �0.5 to 1mm in diameter across
cortex in both mouse30 and human.38 This fortuitously
allows for a straightforward comparison of the scale of
microinfarct-induced functional deficits between
species.

The evolution of MRI signals produced by
microinfarcts

We next imaged mouse microinfarcts longitudinally
with multiple MRI sequences, including T1-weighted,
T2-weighted, IR, T2*-weighted, diffusion-weighted
imaging (DWI), and diffusional kurtosis imaging
(DKI)39,40 (Figure 2). T2-weighted, IR, DWI, and
DKI sequences revealed pronounced signal changes as
microinfarct pathology evolved over nine days
(Figure 2(a), and Supplementary Figures 5 and 6;
green circles in left column show site of penetrating
arteriole occlusion). T1-weighted imaging did not exhi-
bit signal contrast with acute mouse microinfarcts
(Supplementary Figure 5), unlike chronic human
microinfarcts that often appear hypointense with
T1.33 Mouse microinfarcts also did not generate
substantial change with a T2*-weighted sequence,
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suggesting a lack of hemosiderin accumulation
(Supplementary Figure 5).

To characterize the evolution of MRI signal change,
we measured the area occupied by each microinfarct at
various time-points after occlusion, focusing our ana-
lysis on T2-weighted, IR, and DKI sequences, which
provided the most robust signals. In our analyses, we
pooled data from arteriole and venular occlusions for
the following reasons. First, MRI signals from arteri-
olar and venular microinfarcts evolved with a very simi-
lar timescale (Supplementary Figure 7). Second, we
recently demonstrated that occlusion of a penetrating
venule can indirectly affect flow in an upstream pene-
trating arteriole.22 As a result, ischemic injury specific
to arteriole flow loss is difficult to dissociate from
venule flow since the networks are inherently con-
nected. Third, it is conceivable that venule obstructions,
caused for example by vein collagenosis or thrombosis,
also contribute to the spectrum of microinfarcts in the
human brain.

With all three imaging sequences, microinfarct area
was found to peak between one to three days post-
occlusion (Figure 2(b)). The visibility of microinfarcts
then progressively decreased until becoming undetect-
able by five to nine days. Signal decrease was precipi-
tous with IR imaging and microinfarcts were no longer
visible by five days. T2-weighted imaging exhibited a
slightly prolonged sensitivity out to seven days.

Diffusion kurtosis imaging, which provides a measure
of MK, had the greatest sensitivity, detecting microin-
farcts up to nine days post-onset. Further, the duration
of visibility with DKI was related to the size of the
microinfarct (Figure 2(c)). That is, larger infarcts were
visible for a longer duration of time, possibly due to a
greater extent of edema and protracted inflammatory
phases.

Mice were sacrificed for histology at nine days post-
stroke to examine underlying tissue pathology
(Figure 2(d)). This revealed the persistence of well-
demarcated microinfarct cores, defined as a contiguous
region devoid of staining for the neuronal nuclear pro-
tein, NeuN. The microinfarct core was laden with
microglia/macrophages and surrounded by a broad
ring of diffuse fibrillary gliosis. These features fit the
descriptions of sub-acute microinfarcts in human
neuropathological studies.31

Although optimized to occlude a single cortical
arteriole at the brain surface, our photothrombotic
method could potentially cause non-specific damage
to underlying microvessels or brain tissue. To control
for this possibility, we performed identical focal irradi-
ations in regions distant from the neck of penetrating
vessels, termed ‘‘off-target irradiations’’ (Figure 2(a);
yellow circle in left column).22 Overall, these off-target
irradiations generated little to no MRI signal change
(Figure 2(a)) and negligible tissue infarction

Penetrating arteriole occlusion
(a) (c)

500 µm
50 µm

Pre Post

M L
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532 nm fixed 
occlusion laser
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imaging laser
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T2W MRI
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T2W MRI
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(b)Pial vasculature
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Figure 1. Modeling of microinfarcts in mice by optical occlusion of single cortical penetrating arterioles in vivo. (a) Wide-field two-

photon imaging of the pial vasculature through a thinned-skull cranial window. A¼ anterior, L¼ lateral, P¼ posterior, M¼medial. (b)

High-resolution imaging and focal photothrombotic occlusion of a single penetrating arteriole. Green circle shows location of focused

532 nm laser irradiation. (c) Cartoon describing focal 532 nm laser activation of circulating Rose Bengal dye in targeted arterioles.

Imaging is performed with an 800 nm scanned Ti-sapphire laser. (d) Coronal view of microinfarct resulting from occlusion of a single

penetrating arteriole, viewed with T2-weighted 7 T MRI 24 h post-occlusion. (e) A cortical microinfarct identified in the living human

brain using T2-weighted 7 T MRI. Data reproduced with permission from van Veluw et al.33
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(Figure 2(d)) (n¼ 3 for longitudinal imaging experi-
ments). Thus, microinfarcts arose due to loss of blood
flow in the perfusion domain of the targeted penetrat-
ing vessel, rather than off-target effects of the photo-
thrombotic procedure.

MRI reports the nonviable core of acute
microinfarcts

We next sought to understand what aspects of the
microinfarct were detected by structural and diffusion
MRI. One cohort of mice was sacrificed and perfu-
sion fixed at 24 h post-occlusion, immediately follow-
ing MRI scanning. Cortical tissues were sectioned in
the same plane as MRI, i.e. tangential to the brain
surface, allowing spatial registration between MRI

and histology (Figure 3(a) to (c)). Over a broad
range of microinfarct sizes, the regions of heightened
IR signal and MK increase in vivo were strongly
correlated with the histologically defined microinfarct
core (Figure 3(d) and (e); red circles). DKI also
seemed to report edematous tissues just beyond the
microinfarct core, resulting in a �1.25-fold increase
in area compared to the true core (Figure 3(e); red
circles). Off-target irradiations led to minimal MRI
signal change and tissue infarction at the 24-h post-
occlusion time-point (Figure 3(d) and (e); green cir-
cles). Thus, structural and diffusion sequences pri-
marily report the nonviable core of acute
microinfarcts. Accordingly, the viable tissues sur-
rounding the microinfarct core were termed ‘‘peri-
lesional.’’
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Microinfarcts induce neural deficits throughout
peri-lesional tissues

To examine whether microinfarcts impaired the func-
tion of peri-lesional tissues, studies were performed
with a whisker-to-barrel cortex stimulation assay on
awake, head-fixed mice. In animals without an induced
microinfarct, stimulation of the whiskers with air puffs
led to broad neuronal activation in the contralateral
barrel cortex of the primary somatosensory system.
This could be detected histologically by immunostain-
ing for c-Fos, an immediate early gene that is rapidly
expressed during increased neural activity
(Supplementary Figure 2(a) and (b)).29 In comparison,
lower levels of c-Fos were detected in the unstimulated
ipsilateral barrel cortex (Supplementary Figure 2(a)
and (b)). Expression of NeuN, which is not modulated
by neuronal activity, remained unchanged
(Supplementary Figure 2(c)). Similarly, expression of
the synaptic vesicular glutamate transporter 2
(VGlut2), which demarcates the boundaries of the

whisker barrels, was unchanged (Supplementary
Figure 2(d)). The advantage of this c-Fos assay was
that the entirety of the barrel field could be observed
within a single brain slice, allowing the spatial extent of
neural impairments to be examined over broad regions
of cortex.

We strategically induced penetrating arteriole micro-
infarcts (or off-target irradiations) at the edge of the
barrel cortex such that their impact on c-Fos expression
across the barrel field could be examined (Figure 4(a) to
(c) and Supplementary Figure 3). At the acute time-
frame of three days post-onset, we detected a broad
depression of c-Fos expression that extended a radius
of 700 mm beyond the microinfarct core, while the core
itself averaged only 192� 58 mm in radius (Figure 4(d);
red). Assuming that neural deficits extended into other
cortical layers impacted by the microinfarct column, we
estimate the surrounding region of depression to
occupy a volume �12-fold larger than the microinfarct
core. Further, layer 4, where c-Fos was examined, is the
first to receive input from thalamic projections.41,42

Therefore, other cortical layers 2/3 and 5, which receive
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downstream input from layer 4, should also exhibit
attenuated activity.

Depression of activity in peri-lesional tissues
remained prominent for one week, but recovered grad-
ually until c-Fos expression largely reached pre-
occlusion levels by three weeks post-onset. No decrease

of c-Fos expression was detected with off-target irradi-
ations, confirming that the effect was also not due to the
nonspecific actions of photosensitization (Figure 4(d)
green). Change in c-Fos expression was not due to com-
mensurate reduction in neuronal numbers, as NeuN
staining remained largely unchanged (Figure 4(e)).
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This does not indicate, however, that peri-lesional tis-
sues harbor perfectly healthy neurons, as unhealthy but
viable neurons may continue to express NeuN.43,44

Synaptic changes in peri-lesional tissues

Past studies of microinfarcts (and related small cortical
infarcts) in rodents have provided histological evidence
for neuronal pathology in peri-lesional tissues. This
includes observations of scattered neuronal cell
death11,14 as well as axonal and dendritic
damage.12–14,45 We reasoned that synaptic loss should
also correlate with peri-lesional deficits. VGlut2 immu-
nostaining has been shown to be sensitive to changes in
synaptic density, as staining is profoundly decreased in
tissues affected by large-scale stroke.46 Unexpectedly,
VGlut2 staining intensity was unaffected in peri-
lesional tissues in all post-onset time-points examined
(Figure 4(f)). To provide a second measure of synaptic
protein content, we stained for synaptophysin in
another cohort of mice, sacrificed at two days post-
occlusion (n¼ 3) (Supplementary Figure 8).
Synaptophysin was consistent with VGlut2 data, show-
ing no decrease in peri-lesional tissues. We then
obtained more sensitive measurements of synaptic
change by directly measuring dendritic spine densities
of individual layer 2/3 excitatory neurons in Thy1-
YFP-H mice (Figure 5(a) to (d)).47 Spine density of
neurons within the peri-lesional zone was, on average,
25% lower than neurons more distant from the micro-
infarct core (Figure 5(e) and (f)). Blebbing and thinning
of dendrites were also evident nearer the microinfarct
core (Figure 5(d)). These data indicate that microin-
farcts disrupt neuronal synapses in surrounding tissues.
However, immunostaining for some presynaptic pro-
teins may not adequately report this change.

Microinfarcts cause persistent disruption
of hemodynamics in peri-lesional tissues

In the normal brain, neuronal activity is strongly
coupled to an increase in local blood flow in order
to meet the high metabolic demand of neural process-
ing. Thus, microinfarct-induced disruption of neural
activity or neurovascular coupling should also depress
the hemodynamic response in vivo. We examined this
possibility by imaging sensory-evoked dilation of pial
arterioles in awake, head-fixed mice using two-photon
microscopy (Figure 6(a)).26 Microinfarcts were again
placed strategically at the edge of the barrel cortex
(Figure 6(b)). Consistent with c-Fos data (Figure 4),
we observed a pronounced reduction of dilatory activ-
ity in response to whisker stimulation at �3 days post
occlusion, which recovered only partially over the fol-
lowing two weeks (Figure 6(c)). Critically, a loss of

arteriole dilation was also observed well beyond the
microinfarct core (Figure 7(a) to (c); red). Pial surface
arterioles and penetrating arterioles were affected simi-
larly (Figure 7(a) to (c); open vs. filled red circles,
respectively). In contrast, no disturbance in hemo-
dynamic function was seen with the off-target irradi-
ation (Figure 7(a); green). In separate cohorts of mice,
hemodynamic responses were found to decrease within
3 h following the occlusive event, indicating rapid
development of impairment following penetrating
arteriole occlusion (Supplementary Figure 9).
Further, mice receiving sham occlusions (penetrating
arteriole irradiation but no Rose Bengal) did not exhi-
bit reduction in hemodynamic function, suggesting
that these changes were not a result of animal prep-
aration, repeated imaging, or exposure to green laser
light (Supplementary Figure 10).

We quantified hemodynamic function over all post-
occlusion time-points examined and found that
response magnitude was 20% of pre-occlusion levels
at 2 to 3 days after microinfarct onset (Figure 7(d)).
Despite some recovery, response magnitude remained
at �70% of pre-occlusion levels for over two weeks. We
also detected a lag in the latency to dilation that per-
sisted for at least one week (Figure 7(e)), particularly in
arterioles closer to the microinfarct core
(Supplementary Figure 11). Hemodynamic lags have
been reported for large human strokes and may be
due to disruption of neural firing, neurovascular cou-
pling or changes in vascular wall compliance.48 The
average baseline diameters of pial arterioles did not
differ between imaging time-points, suggesting that
loss of dilative capacity was not because arterioles
were already maximally dilated (Figure 7(f)). A small
increase in baseline arteriole diameter was detected at
14–17 days post-occlusion, possibly due to chronic vas-
cular remodeling.49 Critically, arterioles retained the
ability to dilate in response to inhalation of isoflurane,
an anesthetic with potent vasodilatory properties
(Figure 7(f)); only a modest but significant decrease in
isoflurane-induced vasodilation was detected at 2 to 3
and 7 to 9 days post-occlusion. This suggested that a
dysfunction in neurons or neurovascular coupling was
the primary reason for peri-lesional deficits, and that
loss of compliance in the vascular wall, i.e. vascular
stiffening, was minor (Figure 7(g)).

Peri-lesional deficits are insufficiently
detected by MRI

We next examined whether peri-lesional impairments
were associated with change in microstructural hetero-
geneity that allowed it to be discerned from normal
tissue using MRI. MK was measured from core and
peri-lesional regions of six arteriole microinfarcts
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generated in three mice that were comparable in size
and location to those induced for c-Fos assays or
two-photon imaging of hemodynamics (Figure 8(a)
and (b)). In these experiments, MRI voxel dimensions
were modified to cover a broader depth of cortex, i.e.

0.078� 0.078� 0.5 (depth) mm3 versus 0.2� 0.2� 0.3
(depth) mm3 for previous scans, to capture poten-
tial changes in cortical layer 4 where the whisker bar-
rels reside. While MK within the core exhibited
robust increase (Figure 8(c)), we detected no change
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in peri-lesional tissues when functional deficits were
most severe at one to three days post-occlusion
(Figure 8(d)). A modest but significant MK increase
of 15% was detected at seven days post-occlusion in
peri-lesional regions, which may have reflected the
delayed astroglial response that we observed histologi-
cally (Figure 2(d)). Overall, this analysis suggested that
peri-lesional changes associated with functional impair-
ment were largely invisible to MRI, though the delayed
response to this pathology can lead to small but con-
sistent changes in tissue microstructure.

Discussion

Here we used a preclinical model to examine how indi-
vidual cortical microinfarcts impact the function of sur-
rounding tissues over a period of several weeks after
onset (Figure 8(e)). Using ex vivo c-Fos immunostain-
ing and in vivo two-photon imaging of single-vessel
hemodynamics to assess brain function, our key finding
was that sensory-evoked neural activity was signifi-
cantly diminished beyond the microinfarct core, with
an estimated volume of impaired cortical tissues at
least 12-fold larger than the lesion core itself. Further,
sensory-evoked hemodynamics remained partially
depressed for 14–17 days post-occlusion suggesting
that these widespread deficits are also long-lasting. In
contrast to the hemodynamic responses, sensory-
evoked c-Fos expression in the peri-lesion recovered

in later stages of injury, but this apparent dissociation
from hemodynamic responses may be because c-Fos
does not adequately report a partial loss of neural activ-
ity, or that neurovascular coupling remained disrupted.
Overall, however, our results support the conclusion
that microinfarcts cause persistent attenuation of neur-
onal activity and/or neurovascular coupling over a cor-
tical area larger than the lesion core.4 Finally, we show
that in vivo MRI is able to detect the acute/subacute
pathology occurring within the microinfarct core, but
does not adequately report pathophysiological changes
in the peri-lesional tissues.

How might the peri-lesional effects of microinfarcts
be relevant to VCID? First, the collective dysfunction
resulting from hundreds to thousands of microinfarcts
is significantly greater than can be surmised through
routine radiological or histological examinations. This
‘‘invisible’’ pathology occurring beyond the microin-
farct core may contribute to long-term damage or dis-
organization of brain circuitry. Second, our detection
of persistent functional deficits suggests that microin-
farct contributions to VCID may be lasting and cumu-
lative. Third, microinfarcts may contribute to lowering
the threshold for cognitive impairment in individuals
with co-existing Alzheimer’s disease pathology.5 For
example, peri-lesional neurons or vasculature may be
more susceptible to Ab toxicity. Impairment of hemo-
dynamics and chronic astrogliosis could lead to reduced
Ab clearance.50,51
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There is some evidence for peri-lesional changes
associated with microinfarcts in the human brain. The
most common reports are of diffuse fibrillary gliosis
beyond the microinfarct core.52 While astrogliosis can
be beneficial with its roles in wound closure and blood–
brain barrier repair, it can also elicit pro-inflammatory
cascades and interfere with synaptic growth.53

Interestingly, in a mouse model of distributed microin-
farcts,14 the polarity of the astrocytic water channel,
aquaporin 4, was abnormal, which may be detrimental
since this protein is required for glymphatic clearance.54

With respect to neurons, Hinman et al.55 examined
human white matter microinfarcts and found molecular
disorganization of axons and myelin at substantial dis-
tances from the microinfarct core, an effect that likely
disrupted axon conduction. In future work, it will be
important to identify additional molecular targets for

immunostaining that can reveal peri-lesional damage
caused by microinfarcts. A cautionary note from this
study is that markers for presynaptic proteins (synap-
tophysin and VGlut2) and neuronal viability (NeuN)
failed to report peri-lesional regions, despite observa-
tions of dendritic spine loss in Thy1-YFP mice. Thus,
neurodegeneration and functional impact may be in
better agreement when more sensitive markers for neur-
onal decline are used.

A number of plausible mechanisms could underlie
the observed functional deficits. One possibility is the
occurrence of ischemic cortical spreading depression
(CSD),56,57 which we previously demonstrated in a rat
model of single penetrating vessel occlusion.11 CSD
waves are intense depolarizations that can propagate
for many millimeters beyond the core, leading to exces-
sive excitatory neurotransmitter release and potentially
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lasting damage to fine neuronal structure.58 While CSD
has been well studied in large-scale stroke,59,60 their role
in microinfarct injury remains poorly understood.
Another potential mechanism is diaschisis, where
death of neurons within the core disables the cortical
and subcortical circuits to which they were previously
integrated.61 For example, small infarcts generated in
motor cortex also cause widespread impairment beyond
the lesion core.62 However, this impairment was not
due to an inability to excite cortical neurons, but
rather a blockade of motor output through subcortical
relays that lie far from the lesion core. Finally, studies

have also shown that excessive inhibitory tone is
involved in depressing activity in peri-infarct tissues, a
mechanism that is attributed to increased extrasynaptic
GABAergic neurotransmission and reduced GABA
uptake.63 Future studies are needed to determine
which of these mechanisms are most important in
microinfarct injury.

Recent clinical studies have demonstrated the feasibil-
ity of visualizing human microinfarcts with 7T3,33 and
3T MRI.9,64 In addition to facilitating the use of micro-
infarct signals as a potential MRI biomarker for
VCID,65 longitudinal in vivo imaging can provide
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information about their chronic effects.66 Animal models
can complement this clinical work by providing add-
itional information on how microinfarct signals evolve.
For example, we showed that structural and diffusion
MRI are primarily sensitive to the acute microinfarct
core, but not to peri-lesional tissues experiencing func-
tional deficit. Further, consistent with recent estimates
from human studies, our findings support the idea that
acute microinfarcts are only visible for one to two
weeks.4,19 However, clinical studies have shown that
some microinfarcts exhibiting neuropathological fea-
tures of a chronic lesion are visible with ex vivo struc-
tural MRI.35 One possibility for this is that there is a
secondary, lasting increase in MRI signal contrast that
occurs beyond the time-frame we have studied here.
Another possibility is that microinfarcts larger than the
ones induced in this study, i.e., >1mm in diameter,
cause greater perturbations of tissue structure that can
be seen long-term with MRI, such as the formation of a
cyst.

The strength of this study is the ability to precisely
induce cortical microinfarcts with respect to location
and onset time.11,23 This proved essential when exam-
ining the impact of isolated microinfarcts within the
mouse vibrissa sensory system, and when studying
their evolution with multimodal MRI.11,22 Limitations
of the study included the use of mice without any risk
factors for microinfarcts, i.e. advanced age, or
Alzheimer’s disease background, which is a goal of
future studies. Additionally, we have modeled only a
subset of human cortical microinfarcts that are con-
tinuous with the pial surface, and not those confined
within the cortex that likely result from obstruction of
deeper penetrating arterioles branches.16 Finally, this
study has focused on cortical changes. In future work,
it will be important to understand whether microin-
farcts impair the function of remote brain regions by
damaging white matter fibers tracts.
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