341 research outputs found

    Mental Health Diagnoses and Utilization of VA Non-Mental Health Medical Services Among Returning Iraq and Afghanistan Veterans

    Get PDF
    Over 35% of returned Iraq and Afghanistan veterans in VA care have received mental health diagnoses; the most prevalent is post-traumatic stress disorder (PTSD). Little is known about these patients’ use of non-mental health medical services and the impact of mental disorders on utilization. To compare utilization across three groups of Iraq and Afghanistan veterans: those without mental disorders, those with mental disorders other than PTSD, and those with PTSD. National, descriptive study of 249,440 veterans newly utilizing VA healthcare between October 7, 2001 and March 31, 2007, followed until March 31, 2008. We used ICD9-CM diagnostic codes to classify mental health status. We compared utilization of outpatient non-mental health services, primary care, medical subspecialty, ancillary services, laboratory tests/diagnostic procedures, emergency services, and hospitalizations during veterans’ first year in VA care. Results were adjusted for demographics and military service and VA facility characteristics. Veterans with mental disorders had 42–146% greater utilization than those without mental disorders, depending on the service category (all P < 0.001). Those with PTSD had the highest utilization in all categories: 71–170% greater utilization than those without mental disorders (all P < 0.001). In adjusted analyses, compared with veterans without mental disorders, those with mental disorders other than PTSD had 55% higher utilization of all non-mental health outpatient services; those with PTSD had 91% higher utilization. Female sex and lower rank were also independently associated with greater utilization. Veterans with mental health diagnoses, particularly PTSD, utilize significantly more VA non-mental health medical services. As more veterans return home, we must ensure resources are allocated to meet their outpatient, inpatient, and emergency needs

    Speeding up the Consensus Clustering methodology for microarray data analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inference of the number of clusters in a dataset, a fundamental problem in Statistics, Data Analysis and Classification, is usually addressed via internal validation measures. The stated problem is quite difficult, in particular for microarrays, since the inferred prediction must be sensible enough to capture the inherent biological structure in a dataset, e.g., functionally related genes. Despite the rich literature present in that area, the identification of an internal validation measure that is both fast and precise has proved to be elusive. In order to partially fill this gap, we propose a speed-up of <monospace>Consensus</monospace> (Consensus Clustering), a methodology whose purpose is the provision of a prediction of the number of clusters in a dataset, together with a dissimilarity matrix (the consensus matrix) that can be used by clustering algorithms. As detailed in the remainder of the paper, <monospace>Consensus</monospace> is a natural candidate for a speed-up.</p> <p>Results</p> <p>Since the time-precision performance of <monospace>Consensus</monospace> depends on two parameters, our first task is to show that a simple adjustment of the parameters is not enough to obtain a good precision-time trade-off. Our second task is to provide a fast approximation algorithm for <monospace>Consensus</monospace>. That is, the closely related algorithm <monospace>FC</monospace> (Fast Consensus) that would have the same precision as <monospace>Consensus</monospace> with a substantially better time performance. The performance of <monospace>FC</monospace> has been assessed via extensive experiments on twelve benchmark datasets that summarize key features of microarray applications, such as cancer studies, gene expression with up and down patterns, and a full spectrum of dimensionality up to over a thousand. Based on their outcome, compared with previous benchmarking results available in the literature, <monospace>FC</monospace> turns out to be among the fastest internal validation methods, while retaining the same outstanding precision of <monospace>Consensus</monospace>. Moreover, it also provides a consensus matrix that can be used as a dissimilarity matrix, guaranteeing the same performance as the corresponding matrix produced by <monospace>Consensus</monospace>. We have also experimented with the use of <monospace>Consensus</monospace> and <monospace>FC</monospace> in conjunction with <monospace>NMF</monospace> (Nonnegative Matrix Factorization), in order to identify the correct number of clusters in a dataset. Although <monospace>NMF</monospace> is an increasingly popular technique for biological data mining, our results are somewhat disappointing and complement quite well the state of the art about <monospace>NMF</monospace>, shedding further light on its merits and limitations.</p> <p>Conclusions</p> <p>In summary, <monospace>FC</monospace> with a parameter setting that makes it robust with respect to small and medium-sized datasets, i.e, number of items to cluster in the hundreds and number of conditions up to a thousand, seems to be the internal validation measure of choice. Moreover, the technique we have developed here can be used in other contexts, in particular for the speed-up of stability-based validation measures.</p

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    The impact of iodine supplementation and bread fortification on urinary iodine concentrations in a mildly iodine deficient population of pregnant women in South Australia

    Get PDF
    Mild iodine deficiency during pregnancy can have significant effects on fetal development and future cognitive function. The purpose of this study was to characterise the iodine status of South Australian women during pregnancy and relate it to the use of iodine-containing multivitamins. The impact of fortification of bread with iodized salt was also assessed. Women (n = 196) were recruited prospectively at the beginning of pregnancy and urine collected at 12, 18, 30, 36 weeks gestation and 6 months postpartum. The use of a multivitamin supplement was recorded at each visit. Spot urinary iodine concentrations (UIC) were assessed. Median UICs were within the mildly deficient range in women not taking supplements (<90 μg/L). Among the women taking iodine-containing multivitamins UICs were within WHO recommendations (150–249 μg/L) for sufficiency and showed an increasing trend through gestation. The fortification of bread with iodized salt increased the median UIC from 68 μg/L to 84 μg/L (p = .011) which was still in the deficient range. Pregnant women in this region of Australia were unlikely to reach recommended iodine levels without an iodine supplement, even after the mandatory iodine supplementation of bread was instituted in October 2009.Vicki L Clifton, Nicolette A Hodyl, Paul A Fogarty, David J Torpy, Rachel Roberts, Ted Nettelbeck, Gary Ma and Basil Hetze

    Antibacterial properties of tualang honey and its effect in burn wound management: a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of honey as a natural product of <it>Apis </it>spp. for burn treatment has been widely applied for centuries. Tualang honey has been reported to have antibacterial properties against various microorganisms, including those from burn-related diagnoses, and is cheaper and easier to be absorbed by Aquacel dressing. The aim of this study is to evaluate the potential antibacterial properties of tualang honey dressing and to determine its effectiveness as a partial thickness burn wound dressing.</p> <p>Methods</p> <p>In order to quantitate the bioburden of the swabs, pour plates were performed to obtain the colony count (CFU/ml). Swabs obtained from burn wounds were streaked on blood agar and MacConkey agar for bacterial isolation and identification. Later, antibacterial activity of Aquacel-tualang honey, Aquacel-Manuka honey, Aquacel-Ag and Aquacel- plain dressings against bacteria isolated from patients were tested (<it>in-vitro</it>) to see the effectiveness of those dressings by zone of inhibition assays.</p> <p>Results</p> <p>Seven organisms were isolated. Four types of Gram-negative bacteria, namely <it>Enterobacter cloacae</it>, <it>Klebsiella pneumoniae</it>, <it>Pseudomonas </it>spp. and <it>Acinetobacter </it>spp., and three Gram-positive bacteria, namely <it>Staphylococcus aureus</it>, coagulase-negative <it>Staphylococcus aureus </it>(CONS) and <it>Streptococcus </it>spp., were isolated. Total bacterial count decreased on day 6 and onwards. In the <it>in-vitro </it>antibacterial study, Aquacel-Ag and Aquacel-Manuka honey dressings gave better zone of inhibition for Gram positive bacteria compared to Aquacel-Tualang honey dressing. However, comparable results were obtained against Gram negative bacteria tested with Aquacel-Manuka honey and Aquacel-Tualang honey dressing.</p> <p>Conclusions</p> <p>Tualang honey has a bactericidal as well as bacteriostatic effect. It is useful as a dressing, as it is easier to apply and is less sticky compared to Manuka honey. However, for Gram positive bacteria, tualang honey is not as effective as usual care products such as silver-based dressing or medical grade honey dressing.</p

    Veratridine produces distinct calcium response profiles in mouse Dorsal Root Ganglia neurons.

    Get PDF
    Nociceptors are a subpopulation of dorsal root ganglia (DRG) neurons that detect noxious stimuli and signal pain. Veratridine (VTD) is a voltage-gated sodium channel (VGSC) modifier that is used as an "agonist" in functional screens for VGSC blockers. However, there is very little information on VTD response profiles in DRG neurons and how they relate to neuronal subtypes. Here we characterised VTD-induced calcium responses in cultured mouse DRG neurons. Our data shows that the heterogeneity of VTD responses reflects distinct subpopulations of sensory neurons. About 70% of DRG neurons respond to 30-100 μM VTD. We classified VTD responses into four profiles based upon their response shape. VTD response profiles differed in their frequency of occurrence and correlated with neuronal size. Furthermore, VTD response profiles correlated with responses to the algesic markers capsaicin, AITC and α, β-methylene ATP. Since VTD response profiles integrate the action of several classes of ion channels and exchangers, they could act as functional "reporters" for the constellation of ion channels/exchangers expressed in each sensory neuron. Therefore our findings are relevant to studies and screens using VTD to activate DRG neurons

    Control Growth Factor Release Using a Self-Assembled [polycation∶heparin] Complex

    Get PDF
    The importance of growth factors has been recognized for over five decades; however their utilization in medicine has yet to be fully realized. This is because free growth factors have short half-lives in plasma, making direct injection inefficient. Many growth factors are anchored and protected by sulfated glycosaminoglycans in the body. We set out to explore the use of heparin, a well-characterized sulfated glycosaminoglycan, for the controlled release of fibroblast growth factor-2 (FGF-2). Heparin binds a multitude of growth factors and maintains their bioactivity for an extended period of time. We used a biocompatible polycation to precipitate out the [heparin∶FGF-2] complex from neutral buffer to form a release matrix. We can control the release rate of FGF-2 from the resultant matrix by altering the molecular weight of the polycation. The FGF-2 released from the delivery complex maintained its bioactivity and initiated cellular responses that were at least as potent as fresh bolus FGF-2 and fresh heparin stabilized FGF-2. This new delivery platform is not limited to FGF-2 but applicable to the large family of heparin-binding growth factors
    corecore