1,682 research outputs found

    Automated Suturing For Pacemaker Lead Placement Via Video Guided Minimally Invasive Surgical Access

    Get PDF
    The placement of permanent and temporary cardiac epicardial pacemaker leads through minimally invasive cardiac surgery (MICS) access remains a challenge. A reliable ergonomic approach for remote lead placement requires improved technology. We present a novel means to enable the remote placement of epicardial leads using automated suturing devices and videoscopy

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    New techniques for a measurement of the electron's electric dipole moment

    Get PDF
    The electric dipole moment of the electron (eEDM) can be measured with high precision using heavy polar molecules. In this paper, we report on a series of new techniques that have improved the statistical sensitivity of the YbF eEDM experiment. We increase the number of molecules participating in the experiment by an order of magnitude using a carefully designed optical pumping scheme. We also increase the detection efficiency of these molecules by another order of magnitude using an optical cycling scheme. In addition, we show how to destabilise dark states and reduce backgrounds that otherwise limit the efficiency of these techniques. Together, these improvements allow us to demonstrate a statistical sensitivity of 1.8 x 10⁻ÂČ⁞ e cm after one day of measurement, which is 1.2 times the shot-noise limit. The techniques presented here are applicable to other high-precision measurements using molecules

    Ground state cooling in a bad cavity

    Full text link
    We study the mechanical effects of light on an atom trapped in a harmonic potential when an atomic dipole transition is driven by a laser and it is strongly coupled to a mode of an optical resonator. We investigate the cooling dynamics in the bad cavity limit, focussing on the case in which the effective transition linewidth is smaller than the trap frequency, hence when sideband cooling could be implemented. We show that quantum correlations between the mechanical actions of laser and cavity field can lead to an enhancement of the cooling efficiency with respect to sideband cooling. Such interference effects are found when the resonator losses prevail over spontaneous decay and over the rates of the coherent processes characterizing the dynamics.Comment: 6 pages, 5 figures; J. Mod. Opt. (2007

    Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?

    Get PDF
    Cropping systems comprising winter catch crops followed by spring wheat could reduce N leaching risks compared to traditional winter wheat systems in humid climates. We studied the soil mineral N (Ninorg) and root growth of winter- and spring wheat to 2.5 m depth during three years. Root depth of winter wheat (2.2 m) was twice that of spring wheat, and this was related to much lower amounts of Ninorg in the 1 to 2.5 m layer after winter wheat (81 kg Ninorg ha-1 less). When growing winter catch crops before spring wheat, N content in the 1 to 2.5 m layer after spring wheat was not different from that after winter wheat. The results suggest that by virtue of its deep rooting, winter wheat may not lead to high levels of leaching as it is often assumed in humid climates. Deep soil and root measurements (below 1 m) in this experiment were essential to answer the questions we posed

    Towards quantum computing with single atoms and optical cavities on atom chips

    Full text link
    We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scalable quantum computing architectures. Indeed, we show that quantum computing with atom-cavity systems is feasible even in the presence of relatively large spontaneous decay rates and finite photon detector efficiencies.Comment: 14 pages, 6 figure

    Cavity QED with a Bose-Einstein condensate

    Full text link
    Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose-Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.Comment: 6 pages, 4 figures; version accepted for publication in Nature; updated Fig. 4; changed atom numbers due to new calibratio

    Inductively guided circuits for ultracold dressed atoms

    Get PDF
    Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control

    Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX

    Get PDF
    The hexameric AAA+ ring of Escherichia coli ClpX, an ATP-dependent machine for protein unfolding and translocation, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformations, but the roles of switching are uncertain. Moreover, it is controversial whether working AAA+-ring enzymes assume symmetric or asymmetric conformations. Here, we show that a covalent ClpX ring with one subunit locked in the U conformation catalyzes robust ATP hydrolysis, with each unlocked subunit able to bind and hydrolyze ATP, albeit with highly asymmetric position-specific affinities. Preventing U↔L interconversion in one subunit alters the cooperativity of ATP hydrolysis and reduces the efficiency of substrate binding, unfolding and degradation, showing that conformational switching enhances multiple aspects of wild-type ClpX function. These results support an asymmetric and probabilistic model of AAA+-ring activity.National Institutes of Health (U.S.) (Grant GM-101988)Massachusetts Institute of Technology (Poitras Predoctoral Fellowship
    • 

    corecore