3,115 research outputs found

    Signal stripping based sensing parameter estimation in perceptive mobile networks

    Full text link
    © 2017 IEEE. We propose signal stripping based approaches for estimating detailed channel composition parameters for sensing in the recently proposed perceptive mobile networks where simultaneous communication and radar sensing is performed. Via reconstructing a (differentiated) channel matrix, we obtain a signal model which can be solved by conventional compressive sensing (CS) techniques. Parameter estimation methods based on a 1-D CS algorithm are proposed and their effectiveness is validated by provided simulation results

    Analog antenna array based sensing in perceptive mobile networks

    Full text link
    © 2017 IEEE. In this paper, we consider an alternative low-cost and flexible solution of using an analog antenna array for radio sensing at the base station receiver in the recently proposed perceptive mobile networks. We provide receiver beamforming design, and advanced compressive sensing (CS) signal processing techniques for sensing parameter estimation in a multiuser-MIMO (MU-MIMO) communications system. Simulation results are provided and validate the effectiveness of the proposed solution and sensing algorithms

    Common carp (Cyprinus carpio L.) alters its feeding niche in response to changing food resources: direct observations in simulated ponds

    Get PDF
    We used customized fish tanks as model fish ponds to observe grazing, swimming, and conspecific social behavior of common carp (Cyprinus carpio) under variable food-resource conditions to assess alterations in feeding niche. Different food and feeding situations were created by using only pond water or pond water plus pond bottom sediment or pond water plus pond bottom sediment and artificial feeding. All tanks were fertilized twice, prior to stocking and 2 weeks later after starting the experiment to stimulate natural food production. Common carp preferred artificial feed over benthic macroinvertebrates, followed by zooplankton. Common carp did not prefer any group of phytoplankton in any treatment. Common carp was mainly benthic in habitat choice, feeding on benthic macroinvertebrates when only plankton and benthic macroinvertebrates were available in the system. In the absence of benthic macroinvertebrates, their feeding niche shifted from near the bottom of the tanks to the water column where they spent 85% of the total time and fed principally on zooplankton. Common carp readily switched to artificial feed when available, which led to better growth. Common carp preferred to graze individually. Behavioral observations of common carp in tanks yielded new information that assists our understanding of their ecological niche. This knowledge could be potentially used to further the development of common carp aquaculture

    A facile method for bright, colour-tunable light-emitting diodes based on Ga-doped ZnO nanorods

    Full text link
    © 2018 IOP Publishing Ltd. Bottom-up fabrication of nanowire-based devices is highly attractive for oxide photonic devices because of high light extraction efficiency; however, unsatisfactory electrical injection into ZnO and poor carrier transport properties of nanowires severely limit their practical applications. Here, we demonstrate that ZnO nanorods doped with Ga donors by in situ dopant incorporation during vapour-solid growth exhibit superior optoelectronic properties that exceed those currently synthesised by chemical vapour deposition, and accordingly can be electrically integrated into Si-based photonic devices. Significantly, the doping method was found to improve the nanorod quality by decreasing the concentration of point defects. Light-emitting diodes (LEDs) fabricated from the Ga-doped ZnO nanorod/p-Si heterojunction display bright and colour-tunable electroluminescence (EL). These nanorod LEDs possess a dramatically enhanced performance and an order of magnitude higher EL compared with equivalent devices fabricated with undoped nanorods. These results point to an effective route for large-scale fabrication of conductive, single-crystalline ZnO nanorods for photonic and optoelectronic applications

    Framework for a Perceptive Mobile Network using Joint Communication and Radar Sensing

    Full text link
    In this paper, we develop a framework for a novel perceptive mobile/cellular network that integrates radar sensing function into the mobile communication network. We propose a unified system platform that enables downlink and uplink sensing, sharing the same transmitted signals with communications. We aim to tackle the fundamental sensing parameter estimation problem in perceptive mobile networks, by addressing two key challenges associated with sophisticated mobile signals and rich multipath in mobile networks. To extract sensing parameters from orthogonal frequency division multiple access (OFDMA) and spatial division multiple access (SDMA) communication signals, we propose two approaches to formulate it to problems that can be solved by compressive sensing techniques. Most sensing algorithms have limits on the number of multipath signals for their inputs. To reduce the multipath signals, as well as removing unwanted clutter signals, we propose a background subtraction method based on simple recursive computation, and provide a closed-form expression for performance characterization. The effectiveness of these methods is validated in simulations.Comment: 14 pages, 12 figures, Journal pape

    Joint Communication and Radar Sensing in 5G Mobile Network by Compressive Sensing

    Full text link
    © 2019 IEEE. There is growing interest in integrating communication and radar sensing into one system. However, very limited results are reported on how to realize sensing using complicated mobile signals when joint communication and radar sensing (JCAS) is applied to mobile networks. This paper studies radar sensing using one-dimension (1D) to 3D compressive sensing (CS) techniques, referring to signals compatible with latest fifth generation (5G) new radio (NR) standard. We demonstrate that radio sensing using both downlink and uplink 5G signals can be realized with reasonable performance using these CS techniques, and highlight the respective advantages and disadvantages of these techniques.

    Minor structural modifications to alchemix influence mechanism of action and pharmacological activity

    Get PDF
    Alchemix is an exemplar of a class of anthraquinone with efficacy against multidrug resistant tumors. We have explored further the mechanism of action of alchemix and investigated the effect of extending its side arm bearing the alkylating functionality with regard to DNA binding and activity against multidrug resistant cancer cells. Increasing the distance between the intercalating chromophore and the alkylating functionality of ICT2901 (propyl), ICT2902 (butyl) and ICT2903 (pentyl), led to a higher number of DNA alkylation sites, more potent topoisomerase II inhibition and generated more apoptotic and necrotic cells when analysed in p53-proficient HCT116 cells. Intriguingly, alchemix, the compound with the shortest distance between its intercalative chromophore and alkylating functionality (ethyl), did not conform to this SAR. A different toxicity pattern against DNA repair defective CHO cell lines as well as arrest of cells in G1 supports a somewhat distinct mode of action by alchemix compared with its analogues. Importantly, both alchemix and ICT2901 demonstrated greater cytotoxic activity against anthraquinone-resistant MCF-7/adr cells than wild-type MCF-7 cells. Subtle synthetic modification in this anthraquinone series has led to significant changes to the stability of DNA-compound complexes and cellular activity. Given that the failure of chemotherapy in the clinic is often associated with MDR, the results of both alchemix and ICT2901 represent important advances towards improved therapies

    Activity of the DNA minor groove cross-linking agent SG2000 (SJG-136) against canine tumours

    Get PDF
    BACKGROUND: Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies. RESULTS: In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by immunohistochemistry showed good correspondence, but less sensitivity, than measurement of foci. CONCLUSIONS: SG2000 displayed potent activity in vitro against canine cancer cell lines as a result of the formation and persistence of DNA ICLs. SG2000 also had significant in vivo antitumour activity against canine melanoma xenografts, and the comet and γ-H2AX foci methods were relevant pharmacodynamic assays. The clinical testing of SG2000 against spontaneous canine cancer is warranted. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0534-2) contains supplementary material, which is available to authorized users

    The nucleotide-binding domain and leucine-rich repeat protein-3 inflammasome is not activated in airway smooth muscle upon toll-like receptor-2 ligation

    Full text link
    Inflammasomes have emerged as playing key roles in inflammation and innate immunity. A growing body of evidence has suggested that the nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasomeisimportant inchronic airwaydiseases suchas asthma and chronic obstructive pulmonary disease. Inflammasome activation results, in part, in pro-IL-1β processing and the secretion of the proinflammatory cytokine IL-1β. Because asthma exacerbations are associated with elevated concentrations of secreted IL-1β, we addressed whether the NLRP3 inflammasome is activated under in vitro conditions that mimic infectious exacerbations in asthma. Primary cultures of airway smoothmuscle (ASM) cells were treated with infectious stimuli (mimicked using the Toll-like receptor-2 agonist Pam3CSK4, a synthetic bacterial lipopeptide).Whereas Pam3CSK4 robustlyup-regulatedASMcytokineexpressionin response toTNF-αand significantly enhanced IL-1β mRNA expression, we were unable to detect IL-1β in the cell supernatants. Thus, IL-1β was not secreted and therefore was unable to act in an autocrine manner to promote the amplification of ASMinflammatory responses.Moreover, Toll-like receptor-2 ligation did not enhanceNLRP3 or caspase-1 expression in ASM cells, and NLRP3 and caspase-1 protein were not present in the ASM layer of tracheal sections from human donors. In conclusion, these data demonstrate that the enhanced synthetic function of ASM cells, induced by infectious exacerbations of airway inflammation, is NLRP3 inflammasome-independent and IL-1β-independent. Activation of the NLRP3 inflammasome by invading pathogens may prove cell type-specific in exacerbations of airway inflammation in asthma. Copyright © 2013 by the American Thoracic Society

    Joint communication and radar sensing in 5G mobile network by compressive sensing

    Full text link
    corecore