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Abstract We used customized fish tanks as model fish
ponds to observe grazing, swimming, and conspecific
social behavior of common carp (Cyprinus carpio) under
variable food-resource conditions to assess alterations in
feeding niche. Different food and feeding situations were
created by using only pond water or pond water plus
pond bottom sediment or pond water plus pond bottom
sediment and artificial feeding. All tanks were fertilized
twice, prior to stocking and 2 weeks later after starting
the experiment to stimulate natural food production.
Common carp preferred artificial feed over benthic
macroinvertebrates, followed by zooplankton. Common
carp did not prefer any group of phytoplankton in any
treatment. Common carp was mainly benthic in habitat
choice, feeding on benthic macroinvertebrates when only
plankton and benthic macroinvertebrates were available
in the system. In the absence of benthic macroinverte-
brates, their feeding niche shifted from near the bottom

of the tanks to the water column where they spent 85%
of the total time and fed principally on zooplankton.
Common carp readily switched to artificial feed when
available, which led to better growth. Common carp
preferred to graze individually. Behavioral observations
of common carp in tanks yielded new information that
assists our understanding of their ecological niche. This
knowledge could be potentially used to further the
development of common carp aquaculture.
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Introduction

Common carp (Cyprinus carpio) is one of the most
commercially important and widely cultivated freshwa-
ter fish in the world (Biro 1995; Zhou et al. 2003), con-
tributing to 11% of the total world freshwater
aquaculture production (FAO 2007). More than 90% of
this production comes from Asia (FAO 2007), where
common carp is cultured in various pond aquaculture
systems. The food resources of different aquaculture
systems are highly variable depending on the culture
system and nutrient inputs. Many fish change their food
selectivity and feeding niche with changing food avail-
ability (Hegrenes 2001; Iguchi and Abe 2002). Similarly,
common carp might alter its food preference and
behavior in response to changing food resources. Al-
though there is some information about diet and feeding
behavior of common carp (Adamek et al. 2003; Rahman
et al. 2006, 2008a), their feeding niche in aquatic eco-
systems under varying food resources is still not fully
understood. Better information about how common
carp changes its food selectivity and behavior with
changing food resources is necessary to understand its
ecology and to optimize feeding management.

Direct observation can provide important informa-
tion on grazing and swimming behavior (Mearns et al.
1987; Smith et al. 1995) and may provide insight into
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feeding niches in pond ecosystems. This study simulta-
neously considered gut content and feeding behavior of
common carp. The aim of this study was to quantify the
effects of different food resources on food selectivity and
feeding niche of common carp.

Materials and methods

A 4-week experiment was conducted in six rectangular
tanks (size: 2.5 · 0.4 · 0.9 m) at the Fisheries Faculty
Field Laboratory, Bangladesh Agricultural University,
Bangladesh. In each tank, the 0.4-m sides were con-
structed using concrete and the 0.9-m sides were from
glass, allowing direct observation of fish at any place in
the tank. Three treatments, randomly assigned and in
duplicate, were compared: tanks with only plankton (P
tanks), tanks with plankton and benthic macroinverte-
brates (PB tanks) and tanks with plankton, benthic
macroinvertebrates and artificial feed (PBF tanks).

The bottom of the tanks of treatments PB and PBF
received pond sediment. All tanks were filled with pond
water. The heights of the sediment and water column
were 10 and 70 cm, respectively. The water and sediment
were supplied from a central pond. All tanks were treated
with agricultural lime (CaCO3) at a rate of 250 kg ha�1

(25 g tank�1), decomposed cow manure at 1,250 kg ha�1

(125 g tank�1), urea at 31 kg ha�1 (3.1 g tank�1) and
triple super phosphate at 16 kg ha�1 (1.6 g tank�1)
1 week before fish stocking and 2 weeks after starting the
experiment. Each tank was stocked with three common
carp (90.3–98.7 g) between 19:00 and 20:00 hours. All
common carp were collected from domestic stock. A
30% crude protein formulated diet was applied daily at
15 g kg�0.8 day�1 in PBF tanks starting on the day of
stocking until the day of harvesting.

The glass walls were covered by bamboo mats to
prevent sunlight penetration other than through the
water surface as in natural earthen ponds. These bam-
boo mats were only removed during recording of fish
behavior. Each week, 50% of the tank water in each
tank was changed with less turbid pond water. During
the video recording, if the turbidity levels prevented
observations in any part within the tank, the water in the
tank was again diluted with less turbid pond water.

Temperature, dissolved oxygen (DO), pH, nitrate
nitrogen (NO3-N), total ammonia nitrogen (TAN), total
nitrogen (TN), phosphate phosphorus (PO4-P), and total
phosphorus (TP) were determined each week starting on
the day of fish stocking until the end of the experiment.
Temperature was measured with a centigrade thermom-
eter, DO by the Winkler titration method (Stirling 1985),
pH with a Jenway pH meter. TAN and PO4-P were
analyzed spectrophotometrically (Stirling 1985). NO3-N,
TN and TP were determined according to APHA (1998).

Water samples for plankton analysis were collected
weekly taking 2–5 l samples from each tank, which were
then passed through a 10-lm mesh plankton net. Each
concentrated plankton sample was then transferred to a

plastic bottle and diluted to 100 ml with formalin and
distilled water to obtain a 5% buffered formalin solution.
Quality and quantity of plankton were estimated in a
Sedgewick-Rafter (S-R) cell. A 1-ml sample was put in the
S-R cell andwas left for 10 min to allowplankton to settle.
The plankton in ten randomly selected fields in the S-Rcell
was identified to genus according to the keys ofWard and
Whipple (1959), Prescott (1962), Belcher andSwale (1976)
and Bellinger (1992) and counted under a microscope.
Plankton density was calculated using the formula,
N = (P · C · 100)/L, with N = the number of plank-
tonic organisms per liter of pond water, P = the number
of planktonic organisms counted in ten fields, C = the
volume of the plastic bottle holding the sample (100 ml),
and L = the volume of the tank water sample (l).

In each tank, measured volumes of bottom mud
samples were collected at the end of the experiment and
washed through a 250-lm mesh size sieve. Benthic
macroinvertebrates remaining on the sieve were pre-
served in 5% buffered formalin solution. Benthic macr-
oinvertebrates were identified using the following keys:
Brinkhurst (1971) and Pinder and Reiss (1983). Density
was calculated using the formula, N = Y/A, with
N = the number of benthic organisms (numbers cm�3),
Y = total number of benthic macroinvertebrates coun-
ted, and A = volume of bottom mud collected (cm3).
The volumes of plankton and benthic macroinverte-
brates were calculated according to Rahman et al. (2006).

All behavioral observations were performed in the
last week of the experiment by video recording fish
activity. Two analogue video cameras (model
HEL30K1A000) connected with a Quard (model
NB2010S), a video cassette recorder (SANYO, model
TLS-9924P), and a TV (SONY, model KV-TG21M80)
were used for the recording. The combined camera
images covered the entire water volume of each tank.
Fish behavior was monitored for a full 24-h period,
starting at 08:00 hours with a 15-min recording, which
was repeated every 3 h. All video images per tank were
analyzed for individual fish behavior by direct observa-
tion using ‘‘The Observer’’, version 4.1 software (Noldus
Information Technology, Wageningen, The Nether-
lands). All behaviors were measured on the basis of total
time engaged in every 15-min period and expressed as a
percentage of total time. Types of fish behavior quanti-
fied in this study included grazing, swimming, and
resting (Table 1). The scattering of the fish was also
quantified. All behaviors were expressed as the per-
centage of total time pooled over the whole day.

At the end of the experiment, tanks were drained and
all fish were weighed. Specific growth rate (% body
weight day�1) was calculated using the formula, SGR =
[ln WTF � ln WTI] · 100/T, with WTF = average final
fish weight (g), WTI = average initial fish weight (g),
and T = duration of the experiment (days).

After weighing, a 5-cm section of the anterior gut of
each fish was removed by dissection and preserved in a
10% buffered formalin solution. The contents from each
gut were placed into a Petri dish and diluted with 50 ml
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of water. A 1-ml sub-sample was transferred by pipette
to a S-R cell and allowed to rest for 10 min to allow for
settlement of solid particles. The gut contents were
quantified by using ten random S-R cells, with contents
identified to genus level. We calculated the total organ-
isms in the gut using the following formula, N = P ·
C · 100, with N = total number of each organism in a
5-cm gut, P = total number of each organism observed
in ten cells, and C = volume (ml) of sample in the Petri
dish. Food selectivity was assessed by calculating
Chesson’s a (Chesson 1983) using the formula, ai = ri/
pi(
P

ri/pi)
�1, i = 1,…, n; where ai is the selectivity for

prey type i, ri = the relative abundance of prey type i in
the fish ration, pi = the relative abundance of prey type
i in the environment, and n = the total number of prey
types available. The value of ai varies between 0 and 1
with ai = 1/n indicating no selectivity (neutral prefer-
ence) for prey type i, ai < 1/n indicating avoidance
(negative selection) of a prey type i and ai > 1/n indi-
cating preference (positive selection) for a prey type i.
Because n = 7 here, then 1/n = 0.14. For Chesson’s a
(selectivity index), 95% confidence intervals were cal-
culated from tank wise selectivity index.

All data were checked for normality and homogene-
ity of variance before analysis. Only the percent data
had to be arcsine-transformed before analysis, but non-
transformed data are shown in tables or figures. All
water quality and plankton availability data were ana-
lyzed through repeated measures one-way ANOVA with
treatment as the main factor and time as a sub-factor
using the statistical package SAS (version 6.1, SAS
Institute Inc., Cary, NC, USA). Because of the scope of
the present paper, only the main treatment effects are
presented. Gut content, growth parameters, sediment
benthic macroinvertebrates availability and behavior
data were analyzed using one-way ANOVA with only
the treatment factor. Where effects were significant,
differences between the means were analyzed by Bon-
ferroni tests for multiple comparisons of means. Bon-
ferroni corrections were also applied to the P-values of
the ANOVA main treatment effects.

Results

Water quality, and plankton and benthic
macroinvertebrates availability

The difference in food resources and artificial feeding
affected all water-quality variables (P < 0.05) except
temperature and total ammonia nitrogen (TAN)
(Table 2). Higher DO, pH, and total alkalinity were
observed in P tanks than PB tanks, followed by PBF
tanks. The opposite results were observed for NO3–N,
TN, and TP concentrations. Greater total phytoplank-
ton and zooplankton volumes (in the water) were
apparent in the PBF tanks than in the PB and P tanks
(P < 0.05) (Table 2). The volume of benthic macroin-
vertebrates in the bottom sediment was also greater in
the PBF than in the PB tanks.

Table 1 Description of behavioral variables of common carp in
simulated aquaculture pond conditions

Behavioral element Variable

Grazing Grazing in the water column
Grazing on the tank wall
Grazing on the bottom

Swimming Swimming in the water column
Swimming near the bottom
(approximately less than 10 cm
from the bottom)

Resting Resting (motionless)
Social behavior
(scattered)

All common carp were more
than 10 cm apart

Table 2 Water-quality parameters and plankton availability in different treatments based on one-way repeated measure ANOVA

Variable Error (d.f.) F-value and probability Treatment mean ± 95% confidence intervals

Treatment (2 d.f.) P PB PBF

Temperature (�C) 12 1.05 ns 25.7 ± 1.0 25.5 ± 1.1 25.5 ± 1.2
DO (mg l�1) 12 18.81* 7.7a ± 0.7 6.2b ± 0.6 4.9c ± 0.4
pH range – – 7.11–8.58 6.92–7.85 6.57–7.69
Total alkalinity (mg l�1) 12 11.01* 145a ± 8 123ab ± 9 108b ± 8
NO3-N (mg l�1) 12 40.32* 0.24c ± 0.02 0.31b ± 0.03 0.45a ± 0.04
TAN (mg l�1) 12 4.02 ns 0.12 ± 0.02 0.13 ± 0.04 0.19 ± 0.05
TN (mg l�1) 12 41.00* 0.78c ± 0.11 1.01b ± 0.10 1.31a ± 0.13
PO4-P (mg l�1) 12 6.01* 0.17b ± 0.02 0.22ab ± 0.04 0.25a ± 0.03
TP (mg l�1) 12 5.09* 0.48c ± 0.04 0.61b ± 0.04 0.86a ± 0.06
Total phytoplankton (mm3 l�1) 12 200.23** 0.24c ± 0.02 0.33b ± 0.02 0.55a ± 0.08
Total zooplankton (mm3 l�1) 12 75.10* 0.03c ± 0.00 0.05b ± 0.01 0.09a ± 0.02
Total benthic macroinvertebrates (mm3 cm�3) 2 43.381* (1 d.f.) – 0.14b ± 0.04 0.46a ± 0.09

P, PB, and PBF indicate tanks with plankton, tanks with plankton, and benthic macroinvertebrates and tanks with plankton, benthic
macroinvertebrates and artificial feed, respectively
If the effects are significant, ANOVA was followed by Bonferroni post hoc test. Superscripts a, b, and c represent outcomes from the
Bonferroni post hoc test. Mean values in same the row with no superscript in common differ significantly (P < 0.05). * P £ 0.05; **
P < 0.01
ns Not significant
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Fish growth and gut content

A higher specific growth rate was observed in the PBF
tanks than PB, followed by P tanks (Fig. 1). The vol-
umes of total phytoplankton including all groups in
common carp gut were greater in P than PB and PBF
tanks (P < 0.05), while these gut volumes in PB and
PBF tanks were similar (Table 3). The volumes of total
zooplankton including all groups (except Copepoda) in
common carp gut of P tanks were greater than PB tanks,
followed by PBF tanks (P < 0.05). Common carp in-
gested more benthic macroinvertebrates in PB tanks
than PBF tanks (P < 0.01). The gut contents of com-
mon carp in tanks with PBF were mostly identified as
artificial food. Despite the volume of plankton and

macroinvertebrates in common carp gut being higher in
the PBF tanks compared to the PB tanks, common carp
fed primarily on artificial food.

Common carp did not prefer all groups of phyto-
plankton in all treatments (Chesson a < 0.14; Fig. 2). It
preferred (Chesson a > 0.14) all groups of zooplankton
only in the P tanks and PB tanks. Zooplankton prefer-
ence of common carp was higher in the P tanks than PB
tanks.

Grazing, swimming, and social behavior

Common carp was active during the observations and
did not rest, except minimally in PBF tanks (Table 4).
Apart from grazing on the tank wall, all grazing and
swimming variables were significantly different between
treatments (P < 0.01). Common carp grazed in the
water column more in the P tanks than the PB tanks,
followed by PBF tanks (P < 0.01). A similar trend was
also observed for total grazing. Common carp grazed
3.4 and 5.9 times more in the water column in P tanks
than PB and PBF tanks, respectively. Time spent graz-
ing on tank bottoms by common carp was higher in the
PB tanks than PBF tanks and followed by P tanks
(P < 0.05). Time spent grazing on tank bottoms in the
PB tanks was 2.2 and 3.8 times higher than the PBF and
P tanks, respectively. A significant relationship was ob-
served between common carp’s grazing in the water
column and the total volume of plankton in common
carp gut (R2 = 0.95; N = 18; P = 0.01; y = 41.1x +
1.68, here, y indicates percent time spent for water col-
umn grazing by common carp and x indicates total
volume of plankton in common carp gut).

Common carp swam in the water column more in
PBF tanks, followed by P tanks and PB tanks. However,
the trend of swimming near the bottom by common carp
was similar to grazing on the bottom. Common carp
swam near the bottom 3.5 and 2.1 times more in the PB
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Fig. 1 Effects of treatment on SGR (F2,3 = 99.11) of common
carp based on one-way ANOVA. Treatments with no letter in
common are significantly different (P < 0.05) based on Bonferroni
test. Data are mean ± 95% confidence intervals. P, PB, and PBF
indicate tanks with plankton, tanks with plankton, and benthic
macroinvertebrates and tanks with plankton, benthic macroinver-
tebrates and artificial feed, respectively

Table 3 Volume (mm3) of plankton and macroinvertebrates in foregut of common carp based on one-way ANOVA

Variables Error (d.f.) F-value and probability Treatment mean ± 95% confidence intervals

Treatment (2 d.f.) P PB PBF

Bacillariophyceae 3 26.67* 0.084a ± 0.016 (9.8) 0.033b ± 0.003 (2.2) 0.023b ± 0.015 (6.9)
Chlorophyceae 3 28.26* 0.081a ± 0.012 (9.3) 0.032b ± 0.020 (2.3) 0.011b ± 0.002 (4.1)
Cyanophyceae 3 64.13* 0.074a ± 0.011 (8.1) 0.019b ± 0.008 (1.4) 0.013b ± 0.005 (4.3)
Euglenophyceae 3 386.78** 0.029 ± 0.003 (2.3) 0.00 0.00
Total phytoplankton 3 338.27* 0.259a ± 0.013 (29.4) 0.083b ± 0.015 (6.0) 0.046b ± 0.008 (15.2)
Rotifera 3 95.94** 0.180a ± 0.016 (19.5) 0.089b ± 0.016 (6.5) 0.024c ± 0.015 (7.3)
Cladocera 3 64.39** 0.250a ± 0.016 (28.7) 0.121b ± 0.047 (8.6) 0.016c ± 0.000 (5.5)
Copepoda 3 45.97* 0.202a ± 0.048 (22.4) 0.040b ± 0.016 (3.1) 0.016b ± 0.006 (6.5)
Total zooplankton 3 209.37** 0.631a ± 0.048 (70.6) 0.250b ± 0.045 (18.1) 0.056c ± 0.017 (19.4)
Benthic Macroinvertebrates 3 125.18** 0.0 1.062a ± 0.170 (75.9) 0.195b ± 0.025 (65.4)
Total natural food 3 61.72** 0.890b ± 0.035 (100) 1.395a ± 0.232 (100) 0.298c ± 0.033 (100)

P, PB, and PBF indicate tanks with plankton, tanks with plankton and benthic macroinvertebrates and tanks with plankton, benthic
macroinvertebrates and artificial feed, respectively
Percentage of total food bulks are presented in parentheses. ANOVA was performed based on absolute value. If the effects are significant,
ANOVA was followed by Bonferroni post hoc test. Superscripts a, b, and c represent outcomes from the Bonferroni post hoc test. Mean
values in the same row with no superscript in common differ significantly (P < 0.05). * P £ 0.05; ** P £ 0.01
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tanks than PBF and P tanks, respectively. Total swim-
ming by common carp was highest in PBF tanks, fol-
lowed by PB tanks and P tanks.

Common carp showed the highest scattering behavior
in P tanks, followed by PB and PBF tanks (Table 4).
Time spent scattering was positively correlated with time
spent for grazing (P < 0.01) (Fig. 3). No aggressive
behavior was observed during the observation period.

Discussion

Both sediment bioturbation and artificial feeding influ-
ence the biotic and abiotic properties of water by
increasing organic matter decomposition, which subse-
quently increases the N and P concentrations and

decreases DO, pH, and total alkalinity in the water
(Hargreaves 1998; Rahman et al. 2008b, 2008c). In this
study, PBF tanks were affected by both artificial feeding
and bioturbation of the sediment by the fish. In contrast,
PB tanks were only affected by the latter. This resulted in
comparatively higher N and P compounds and lower
DO, pH and total alkalinity in PBF tanks than PB tanks,
followed by P tanks. Nutrient concentration stimulated
photosynthesis, increasing phytoplankton and zoo-
plankton biomass (Rahman and Verdegem 2007).

In this study, when plankton and benthic macroin-
vertebrates were available, common carp ignored
phytoplankton, strongly selected benthic macroinverte-
brates (contributing 76% of the total gut content vol-
ume) and weakly selected zooplankton. These results
suggest that common carp prefer benthic macroinver-
tebrates to zooplankton when plankton and benthic
macroinvertebrates are provided together. This result is
consistent with our earlier study (Rahman et al. 2006) in
rohu-common carp bi-culture ponds in which common
carp principally ingested benthic macroinvertebrates in
the absence of artificial feed. This preference for benthic
macroinvertebrates most probably influenced common
carp behavior as they spent more time near the bottom
of the tanks for grazing and swimming in PB tanks than
all other tanks. This indicates that the feeding niche of
common carp is largely benthic when only plankton and
benthic macroinvertebrates are available in the system.
This agrees with the general concept that common carp
is a benthivorous fish (Parkos et al. 2003).

Many fish shift to less profitable foods when pre-
ferred food sources become depleted (Balcombe et al.
2005; Balcombe and Humphries 2006), which can affect
foraging, swimming and social behavior. This concept is
also true for common carp. In this study, common carp
increased its preference for zooplankton, which was a
very dominant food (contributing more than 70% of the
total gut content volume) in the absence of benthic
macroinvertebrates. The zooplankton dependency re-
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Fig. 2 Chesson selectivity index (mean ± 95% confidence inter-
vals) of common carp in different groups of plankton under
different treatments. Baci, Chlo, Cyan, Eugl, Roti, Clad, and Cope
indicate Bacillariophyceae, Chlorophyceae, Cyanophyceae, Eu-
glenophyceae, Rotifera, Cladocera, and Copepoda, respectively

Table 4 Grazing and swimming, resting, and social behavior of common carp in different treatments based on one-way ANOVA

Variable Error (d.f.) F-value and probability Treatment means ± 95% confidence intervals

Treatment (2 d.f.) P PB PBF

Grazing, swimming, and resting
Grazing in the water column 3 155.97** 39.6a ± 5.7 12.7b ± 0.7 7.2c ± 0.4
Grazing on the wall 3 0.84 ns 0.8 ± 0.4 0.5 ± 0.2 0.7 ± 0.3
Grazing on the bottom 3 58.71* 6.3c ± 0.4 24.2a ± 3.9 10.8b ± 1.2
Total grazing 3 84.49* 46.7a ± 3.9 37.5b ± 3.5 18.6c ± 1.1
Swimming in the water column 3 113.51** 45.0b ± 3.0 33.3c ± 1.6 64.0a ± 3.6
Swimming near bottom 3 166.75** 8.3c ± 0.9 29.2a ± 1.9 14.0b ± 2.0
Total swimming 3 61.22* 53.3c ± 3.9 62.5b ± 3.5 77.9a ± 2.6
Resting (motionless) 3 186.32** 0.0 0.0 3.4 ± 0.5

Social behavior (Scattered) 3 74.15* 76.0a ± 6.6 62.6b ± 3.2 41.9c ± 2.0

P, PB, and PBF indicate tanks with plankton, tanks with plankton and benthic macroinvertebrates and tanks with plankton, benthic
macroinvertebrates and artificial feed, respectively
Results are based on the percent duration of time for any given behavior. If the effects are significant, ANOVA was followed by
Bonferroni post hoc test. Superscripts a, b, and c represent outcomes from the Bonferroni post hoc test. Mean values in the same row with
no superscript in common are significantly different * P £ 0.05; **P < 0.01; ns, not significant
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sulted in a behavioral shift from benthic grazing and
swimming to activities mostly in the water column with
85% of the total time recorded spent in the water col-
umn. This result was further supported by the positive
relationship between common carp’s grazing in the wa-
ter column and the total volume of plankton in common
carp gut. Thus, common carp shifted its feeding from the
bottom of the tank to the water column in absence of
benthic macroinvertebrates.

When artificial food was supplied with plankton and
benthic macroinvertebrates, common carp ingested the
lowest volume of phytoplankton, zooplankton, and
benthic macroinvertebrates. Although the volume of
artificial feed in common carp gut was not directly
measured, microscopic observation indicated that com-
mon carp mostly ingested artificial feed in PBF tanks.
The gut contents of common carp in PBF tanks clearly
suggested that common carp preferred artificial feed to
benthic macroinvertebrates, followed by zooplankton.
This result agrees in part with Spataru et al. (1980) and
Schroeder (1983), who observed that common carp
naturally depend on plankton and benthic macroinver-
tebrates but when artificial feed is applied, they will
readily accept artificial feed.

Fish would need less time and energy to ingest readily
available artificial feed than to ingest the same volume of
plankton by sucking water and/or benthic macroinver-
tebrates by digging bottom sediment. Artificial food
preference of common carp resulted in the lowest total
grazing and highest total swimming time and highest
growth rate in PBF tanks. Similar effects of artificial feed
on total grazing and swimming time of common carp
were observed in our earlier study (Rahman et al.
2008a), in which common carp was stocked in rohu
tanks. This indicates that common carp can modify their

feeding and behavior in the presence of other fish, thus
making them a valuable species not only for monocul-
ture but also for polyculture.

Regardless of where fish live, they may exhibit either
scattering or shoaling during grazing, which varies
among species, food habits, and food resources (Breder
1959; Morgan 1988). In this study, conspecific scattering
behavior of common carp was dependent on both food
resources and grazing. The relationship between grazing
and scattering time of common carp indicated that
common carp preferred to graze individually. Therefore,
lower grazing in the presence of artificial feed resulted in
less time spent scattered and more time swimming.

In conclusion, common carp was confirmed to be
benthivorous in their general behavior, which was linked
to their feeding ecology where they exhibited a prefer-
ence for benthic macroinvertebrates over zooplankton.
This fish readily switched to artificial feed when it was
available. Common carp can also change its grazing,
swimming, and conspecific social behavior in response
to changing food resources. There is further research
potential to examine whether common carp can shift its
food selectivity and feeding niche when interspecific
(with other benthivorous fish) and/or intraspecific
(mixture of same species, including different size classes
at high density) competition exists. Knowledge gained
from such research could benefit common carp mono-
and polyculture management.
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