83 research outputs found

    Estimated Risk of HIV Acquisition and Practice for Preventing Occupational Exposure: A Study of Healthcare Workers at Tumbi and Dodoma Hospitals, Tanzania.

    Get PDF
    Health care workers (HCWs) are at risk of acquiring human immuno-deficiency virus (HIV) and other infections via exposure to infectious patients' blood and body fluids. The main objective of this study was to estimate the risk of HIV transmission and examine the practices for preventing occupational exposures among HCWs at Tumbi and Dodoma Hospitals in Tanzania. This study was carried out in two hospitals, namely, Tumbi in Coast Region and Dodoma in Dodoma Region. In each facility, hospital records of occupational exposure to HIV infection and its management were reviewed. In addition, practices to prevent occupational exposure to HIV infection among HCWs were observed. The estimated risk of HIV transmission due to needle stick injuries was calculated to be 7 cases per 1,000,000 HCWs-years. Over half of the observed hospital departments did not have guidelines for prevention and management of occupational exposure to HIV infections and lacked well displayed health and safety instructions. Approximately, one-fifth of the hospital departments visited failed to adhere to the instructions pertaining to correlation between waste materials and the corresponding colour coded bag/container/safety box. Seventy four percent of the hospital departments observed did not display instructions for handling infectious materials. Inappropriate use of gloves, lack of health and safety instructions, and lack of use of eye protective glasses were more frequently observed at Dodoma Hospital than at Tumbi Hospital. The poor quality of the hospital records at the two hospitals hampered our effort to characterise the risk of HIV infection acquisition by HCWs. Greater data completeness in hospital records is needed to allow the determination of the actual risk of HIV transmission for HCWs. To further reduce the risk of HIV infection due to occupational exposure, hospitals should be equipped with sufficient personal protective equipment (PPE) and HCWs should be reminded of the importance of adhering to universal precautions

    Cancer somatic mutations cluster in a subset of regulatory sites predicted from the ENCODE data

    Get PDF
    Background: Transcriptional regulation of gene expression is essential for cellular differentiation and function, and defects in the process are associated with cancer. The ENCODE project has mapped potential regulatory sites across the complete genome in many cell types, and these regions have been shown to harbour many of the somatic mutations that occur in cancer cells, suggesting that their effects may drive cancer initiation and development. The ENCODE data suggests a very large number of regulatory sites, and methods are needed to identify those that are most relevant and to connect them to the genes that they control. Methods: Predictive models of gene expression were developed by integrating the ENCODE data for regulation, including transcription factor binding and DNase1 hypersensitivity, with RNA-seq data for gene expression. A penalized regression method was used to identify the most predictive potential regulatory sites for each transcript. Known cancer somatic mutations from the COSMIC database were mapped to potential regulatory sites, and we examined differences in the mapping frequencies associated with sites chosen in regulatory models and other (rejected) sites. The effects of potential confounders, for example replication timing, were considered. Results: Cancer somatic mutations preferentially occupy those regulatory regions chosen in our models as most predictive of gene expression. Conclusion: Our methods have identified a significantly reduced set of regulatory sites that are enriched in cancer somatic mutations and are more predictive of gene expression. This has significance for the mechanistic interpretation of cancer mutations, and the understanding of genetic regulation

    Day-case open reduction for developmental dysplasia of the hip.

    Get PDF
    AIMS: Open reduction in developmental dysplasia of the hip (DDH) is regularly performed despite screening programmes, due to failure of treatment or late presentation. A protocol for open reduction of DDH has been refined through collaboration between surgical, anaesthetic, and nursing teams to allow same day discharge. The objective of this study was to determine the safety and feasibility of performing open reduction of DDH as a day case. METHODS: A prospectively collected departmental database was visited. All consecutive surgical cases of DDH between June 2015 and March 2020 were collected. Closed reductions, bilateral cases, cases requiring corrective osteotomy, and children with comorbidities were excluded. Data collected included demographics, safety outcome measures (blood loss, complications, readmission, reduction confirmation), and feasibility for discharge according to the Face Legs Activity Cry Consolidability (FLACC) pain scale. A satisfaction questionnaire was filled by the carers. Descriptive statistics were used for analysis. RESULTS: Out of 168 consecutive DDH cases, 16 patients fit the inclusion criteria (age range 10 to 26 months, 13 female). Intraoperative blood loss ranged from "minimal" to 120 ml, and there were no complications or readmissions. The FLACC score was 0 for all patients. The carers satisfaction questionnaire expressed high satisfaction from the experience with adequate information and support provided. CONCLUSION: Open reduction in DDH, without corrective osteotomy, is safe and feasible to be managed as a day case procedure. It requires a clear treatment pathway, analgesia, sufficient counselling, and communication with carers. It is even more important during the COVID-19 pandemic when reduced length of hospital stay is likely to be safer for both patient and their parents. Cite this article: Bone Joint Open 2021;2(4):271-277

    Preservation of large-scale chromatin structure in FISH experiments

    Get PDF
    The nuclear organization of specific endogenous chromatin regions can be investigated only by fluorescence in situ hybridization (FISH). One of the two fixation procedures is typically applied: (1) buffered formaldehyde or (2) hypotonic shock with methanol acetic acid fixation followed by dropping of nuclei on glass slides and air drying. In this study, we compared the effects of these two procedures and some variations on nuclear morphology and on FISH signals. We analyzed mouse erythroleukemia and mouse embryonic stem cells because their clusters of subcentromeric heterochromatin provide an easy means to assess preservation of chromatin. Qualitative and quantitative analyses revealed that formaldehyde fixation provided good preservation of large-scale chromatin structures, while classical methanol acetic acid fixation after hypotonic treatment severely impaired nuclear shape and led to disruption of chromosome territories, heterochromatin structures, and large transgene arrays. Our data show that such preparations do not faithfully reflect in vivo nuclear architecture. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00412-006-0084-2 and is accessible for authorized users

    FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia

    Get PDF
    The t(10;11)(p13;q14) translocation results in the fusion of the CALM (clathrin assembly lymphoid myeloid leukemia protein) and AF10 genes. This translocation is observed in acute myeloblastic leukemia (AML M6), acute lymphoblastic leukemia (ALL) and malignant lymphoma. Using a yeast two-hybrid screen, the four and a half LIM domain protein 2 (FHL2) was identified as a CALM interacting protein. Recently, high expression of FHL2 in breast, gastric, colon, lung as well as in prostate cancer was shown to be associated with an adverse prognosis. The interaction between CALM and FHL2 was confirmed by glutathione S-transferase-pulldown assay and co-immunoprecipitation experiments. The FHL2 interaction domain of CALM was mapped to amino acids 294–335 of CALM. The transcriptional activation capacity of FHL2 was reduced by CALM, but not by CALM/AF10, which suggests that regulation of FHL2 by CALM might be disturbed in CALM/AF10-positive leukemia. Extremely high expression of FHL2 was seen in acute erythroid leukemia (AML M6). FHL2 was also highly expressed in chronic myeloid leukemia and in AML with complex aberrant karyotype. These results suggest that FHL2 may play an important role in leukemogenesis, especially in the case of AML M6

    Murine Leukemias with Retroviral Insertions at Lmo2 Are Predictive of the Leukemias Induced in SCID-X1 Patients Following Retroviral Gene Therapy

    Get PDF
    Five X-linked severe combined immunodeficiency patients (SCID-X1) successfully treated with autologous bone marrow stem cells infected ex vivo with an IL2RG-containing retrovirus subsequently developed T-cell leukemia and four contained insertional mutations at LMO2. Genetic evidence also suggests a role for IL2RG in tumor formation, although this remains controversial. Here, we show that the genes and signaling pathways deregulated in murine leukemias with retroviral insertions at Lmo2 are similar to those deregulated in human leukemias with high LMO2 expression and are highly predictive of the leukemias induced in SCID-X1 patients. We also provide additional evidence supporting the notion that IL2RG and LMO2 cooperate in leukemia induction but are not sufficient and require additional cooperating mutations. The highly concordant nature of the genetic events giving rise to mouse and human leukemias with mutations at Lmo2 are an encouraging sign to those wanting to use mice to model human cancer and may help in designing safer methods for retroviral gene therapy

    Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts

    Get PDF
    Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer
    corecore