134 research outputs found

    Semi-Holographic Fermi Liquids

    Full text link
    We show that the universal physics of recent holographic non-Fermi liquid models is captured by a semi-holographic description, in which a dynamical boundary field is coupled to a strongly coupled conformal sector having a gravity dual. This allows various generalizations, such as a dynamical exponent and lattice and impurity effects. We examine possible relevant deformations, including multi-trace terms and spin-orbit effects. We discuss the matching onto the UV theory of the earlier work, and an alternate description in which the boundary field is integrated out.Comment: 26 pages, 4 figures; v2: typos corrected and report number adde

    Stringy effects in black hole decay

    Get PDF
    We compute the low energy decay rates of near-extremal three(four) charge black holes in five(four) dimensional N=4 string theory to sub-leading order in the large charge approximation. This involves studying stringy corrections to scattering amplitudes of a scalar field off a black hole. We adapt and use recently developed techniques to compute such amplitudes as near-horizon quantities. We then compare this with the corresponding calculation in the microscopic configuration carrying the same charges as the black hole. We find perfect agreement between the microscopic and macroscopic calculations; in the cases we study, the zero energy limit of the scattering cross section is equal to four times the Wald entropy of the black hole.Comment: 32 page

    Boundary objects and boundary crossing for numeracy teaching

    Get PDF
    In this paper, we share analysis of an episode of a pre-service teacher’s handling of a map artefact within his practicum teaching of β€˜Mathematical Literacy’ in South Africa. Mathematical Literacy, as a post-compulsory phase subject in the South African curriculum, shares many of the aims of numeracy as described in the international literatureβ€” including approaches based on the inclusion of real life contexts and a trajectory geared towards work, life and citizenship. Our attention in this paper is focused specifically on artefacts at the boundary of mathematical and contextual activities. We use analysis of the empirical handling of artefacts cast as β€˜boundary objects’ to argue the need for β€˜boundary crossing’ between mathematical and contextual activities as a critical feature of numeracy teaching. We pay particular attention to the differing conventions and extents of applicability of rules associated with boundary artefacts when working with mathematical or contextual perspectives. Our findings suggest the need to consider boundary objects more seriously within numeracy teacher education, with specific attention to the ways in which they are configured on both sides of the boundary in order to deal effectively with explanations and interactions in classrooms aiming to promote numeracy

    Polyfunctional T-Cell Responses Are Disrupted by the Ovarian Cancer Ascites Environment and Only Partially Restored by Clinically Relevant Cytokines

    Get PDF
    Host T-cell responses are associated with favorable outcomes in epithelial ovarian cancer (EOC), but it remains unclear how best to promote these responses in patients. Toward this goal, we evaluated a panel of clinically relevant cytokines for the ability to enhance multiple T-cell effector functions (polyfunctionality) in the native tumor environment.Experiments were performed with resident CD8+ and CD4+ T cells in bulk ascites cell preparations from high-grade serous EOC patients. T cells were stimulated with Ξ±-CD3 in the presence of 100% autologous ascites fluid with or without exogenous IL-2, IL-12, IL-18 or IL-21, alone or in combination. T-cell proliferation (Ki-67) and function (IFN-Ξ³, TNF-Ξ±, IL-2, CCL4, and CD107a expression) were assessed by multi-parameter flow cytometry. In parallel, 27 cytokines were measured in culture supernatants. While ascites fluid had variable effects on CD8+ and CD4+ T-cell proliferation, it inhibited T-cell function in most patient samples, with CD107a, IFN-Ξ³, and CCL4 showing the greatest inhibition. This was accompanied by reduced levels of IL-1Ξ², IL-1ra, IL-9, IL-17, G-CSF, GM-CSF, Mip-1Ξ±, PDGF-bb, and bFGF in culture supernatants. T-cell proliferation was enhanced by exogenous IL-2, but other T-cell functions were largely unaffected by single cytokines. The combination of IL-2 with cytokines engaging complementary signaling pathways, in particular IL-12 and IL-18, enhanced expression of IFN-Ξ³, TNF-Ξ±, and CCL4 in all patient samples by promoting polyfunctional T-cell responses. Despite this, other functional parameters generally remained inhibited.The EOC ascites environment disrupts multiple T-cell functions, and exogenous cytokines engaging diverse signaling pathways only partially reverse these effects. Our results may explain the limited efficacy of cytokine therapies for EOC to date. Full restoration of T-cell function will require activation of signaling pathways beyond those engaged by IL-2, IL-12, IL-18, and IL-21

    Human Antigen-Specific Regulatory T Cells Generated by T Cell Receptor Gene Transfer

    Get PDF
    Therapies directed at augmenting regulatory T cell (Treg) activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition.To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR) gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff) activity as determined by tumor cell growth and luciferase reporter-based imaging.These results support the feasibility of class I-restricted TCR transfer as a promising strategy to redirect the functional properties of Tregs and provide for a more efficacious adoptive cell therapy

    Functional tissue engineering of ligament healing

    Get PDF
    Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE) approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally

    Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles

    Get PDF
    Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while alleviating major limitations of current approaches. Yet, HIV-1's ability to rapidly acquire mutations and escape therapy presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any gene-based technique. We develop a computational model of HIV's evolutionary dynamics in vivo in the presence of a genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We also propose and investigate a novel treatment strategy that leverages upon gene therapy's unique capacity to deliver different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective therapeutic agents

    IL-2 Mediates CD4+ T Cell Help in the Breakdown of Memory-Like CD8+ T Cell Tolerance under Lymphopenic Conditions

    Get PDF
    Background: Lymphopenia results in the proliferation and differentiation of naΓ―ve T cells into memory-like cells in the apparent absence of antigenic stimulation. This response, at least in part due to a greater availability of cytokines, is thought to promote anti-self responses. Although potentially autoreactive memory-like CD8 + T cells generated in a lymphopenic environment are subject to the mechanisms of peripheral tolerance, they can induce autoimmunity in the presence of antigen-specific memory-like CD4 + T helper cells. Methodology/Principal Findings: Here, we studied the mechanisms underlying CD4 help under lymphopenic conditions in transgenic mice expressing a model antigen in the beta cells of the pancreas. Surprisingly, we found that the self-reactivity mediated by the cooperation of memory-like CD8 + and CD4 + T cells was not abrogated by CD40L blockade. In contrast, treatment with anti-IL-2 antibodies inhibited the onset of autoimmunity. IL-2 neutralization prevented the CD4-mediated differentiation of memory-like CD8 + T cells into pathogenic effectors in response to self-antigen cross-presentation. Furthermore, in the absence of helper cells, induction of IL-2 signaling by an IL-2 immune complex was sufficient to promote memory-like CD8 + T cell self-reactivity. Conclusions/Significance: IL-2 mediates the cooperation of memory-like CD4 + and CD8 + T cells in the breakdown of crosstolerance, resulting in effector cytotoxic T lymphocyte differentiation and the induction of autoimmune disease

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers
    • …
    corecore