12 research outputs found

    Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes

    Get PDF
    Background Staphylococcal toxicity and antibiotic resistance (STAAR) have been menacing public health. Although vancomycin-resistant Staphylococcus aureus (VRSA) is currently not as widespread as methicillin-resistant S. aureus (MRSA), genome evolution of MRSA into VRSA, including strains engineered within the same patient under anti-staphylococcal therapy, may build up to future public health concern. To further complicate diagnosis, infection control and anti-microbial chemotherapy, non-sterile sites such as the nares and the skin could contain both S. aureus and coagulase-negative staphylococci (CoNS), either of which could harbour mecA the gene driving staphylococcal methicillin-resistance and required for MRSA-VRSA evolution. Results A new heptaplex PCR assay has been developed which simultaneously detects seven markers for: i) eubacteria (16S rRNA), ii) Staphylococcus genus (tuf), iii) Staphylococcus aureus (spa), iv) CoNS (cns), v) Panton-Valentine leukocidin (pvl), vi) methicillin resistance (mecA), and vii) vancomycin resistance (vanA). Following successful validation using 255 reference bacterial strains, applicability to analyse clinical samples was evaluated by direct amplification in spiked blood cultures (n = 89) which returned 100 % specificity, negative and positive predictive values. The new assay has LoD of 1.0x103 CFU/mL for the 16S rRNA marker and 1.0x104 CFU/mL for six other markers and completes cycling in less than one hour. Conclusion The speed, sensitivity (100 %), NPV (100 %) and PPV (100 %) suggest the new heptaplex PCR assay could be easily integrated into a routine diagnostic microbiology workflow. Detection of the cns marker allows for unique identification of CoNS in mono-microbial and in poly-microbial samples containing mixtures of CoNS and S. aureus without recourse to the conventional elimination approach which is ambiguous. In addition to the SA-CoNS differential diagnostic essence of the new assay, inclusion of vanA primers will allow microbiology laboratories to stay ahead of the emerging MRSA-VRSA evolution. To the best of our knowledge, the new heptaplex PCR assay is the most multiplexed among similar PCR-based assays for simultaneous detection of STAAR

    Crosstalk between glial and glioblastoma cells triggers the "go-or-grow" phenotype of tumor cells

    Get PDF
    Background: Glioblastoma (GBM), the most malignant primary brain tumor, leads to poor and unpredictable clinical outcomes. Recent studies showed the tumor microenvironment has a critical role in regulating tumor growth by establishing a complex network of interactions with tumor cells. In this context, we investigated how GBM cells modulate resident glial cells, particularly their paracrine activity, and how this modulation can influence back on the malignant phenotype of GBM cells. Methods: Conditioned media (CM) of primary mouse glial cultures unexposed (unprimed) or exposed (primed) to the secretome of GL261 GBM cells were analyzed by proteomic analysis. Additionally, these CM were used in GBM cells to evaluate their impact in glioma cell viability, migration capacity and activation of tumor-related intracellular pathways. Results: The proteomic analysis revealed that the pre-exposure of glial cells to CM from GBM cells led to the upregulation of several proteins related to inflammatory response, cell adhesion and extracellular structure organization within the secretome of primed glial cells. At the functional levels, CM derived from unprimed glial cells favored an increase in GBM cell migration capacity, while CM from primed glial cells promoted cells viability. These effects on GBM cells were accompanied by activation of particular intracellular cancer-related pathways, mainly the MAPK/ERK pathway, which is a known regulator of cell proliferation. Conclusions: Together, our results suggest that glial cells can impact on the pathophysiology of GBM tumors, and that the secretome of GBM cells is able to modulate the secretome of neighboring glial cells, in a way that regulates the "go-or-grow" phenotypic switch of GBM cells.Fundação para a Ciência e Tecnologia (IF/00601/2012 to B.M.C.; IF/00111 to A.J.S; SFRH/BD/52287/2013 to A.I.O.; SFRH/BD/81495/2011 to S.I.A.; SFRH/BD/88121/2012 to J.V.C.; projects PTDC/SAU-GMG/113795/2009 to B.M.C.; PTDC/NEU-NMC/0205/2012, PTDC/NEU-SCC/7051/2014, PEst-C/SAU/LA0001/2013–2014 and UID/NEU/04539/2013 to B.M.), Liga Portuguesa Contra o Cancro (B.M.C.), Fundação Calouste Gulbenkian (B.M.C.) and Inter-University Doctoral Programme in Ageing and Chronic Disease (PhDOC; to A.I.O.). Project co-financed by Programa Operacional Regional do Norte (ON.2—O Novo Norte), Quadro de Referência Estratégico Nacional (QREN), Fundo Europeu de Desenvolvimento Regional (FEDER), Programa Operacional Factores de Competitividade (COMPETE), and by The National Mass Spectrometry Network (RNEM) under the contract REDE/1506/REM/2005info:eu-repo/semantics/publishedVersio

    Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass

    No full text

    Preventing Treatment-Related Functional Decline: Strategies to Maximize Resilience

    No full text

    Plant Chemistry: Endless Variety

    No full text
    corecore