400 research outputs found

    Acute isolated acetabular fracture following a game of squash: a case report

    Get PDF
    Although hip injuries do not account a large amount of the Sports Physician's workload they can result in significant morbidity. We present a case where an acetabular fracture was sustained in a relatively young female while playing squash without any history of fall or injury but was treated successfully non-operatively. Such patients who present with acute hip pain must not be dismissed as simply having a soft tissue injury

    14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in Head and Neck cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The five-year survival rates for head and neck squamous cell carcinoma (HNSCC) patients are less than 50%, and the prognosis has not improved, despite advancements in standard multi-modality therapies. Hence major emphasis is being laid on identification of novel molecular targets and development of multi-targeted therapies. 14-3-3 zeta, a multifunctional phospho-serine/phospho-threonine binding protein, is emerging as an effector of pro-survival signaling by binding to several proteins involved in apoptosis (Bad, FKHRL1 and ASK1) and may serve as an appropriate target for head and neck cancer therapy. Herein, we determined effect of guggulsterone (GS), a farnesoid X receptor antagonist, on 14-3-3 zeta associated molecular pathways for abrogation of apoptosis in head and neck cancer cells.</p> <p>Methods</p> <p>Head and neck cancer cells were treated with guggulsterone (GS). Effect of GS-treatment was evaluated using cell viability (MTT) assay and apoptosis was verified by annexin V, DNA fragmentation and M30 CytoDeath antibody assay. Mechanism of GS-induced apoptosis was determined by western blotting and co-IP assays using specific antibodies.</p> <p>Results</p> <p>Using in vitro models of head and neck cancer, we showed 14-3-3 zeta as a key player regulating apoptosis in GS treated SCC4 cells. Treatment with GS releases BAD from the inhibitory action of 14-3-3 zeta in proliferating HNSCC cells by activating protein phosphatase 2A (PP2A). These events initiate the intrinsic mitochondrial pathway of apoptosis, as revealed by increased levels of cytochrome c in cytoplasmic extracts of GS-treated SCC4 cells. In addition, GS treatment significantly reduced the expression of anti-apoptotic proteins, Bcl-2, xIAP, Mcl1, survivin, cyclin D1 and c-myc, thus committing cells to apoptosis. These events were followed by activation of caspase 9, caspase 8 and caspase 3 leading to cleavage of its downstream target, poly-ADP-ribose phosphate (PARP).</p> <p>Conclusion</p> <p>GS targets 14-3-3 zeta associated cellular pathways for reducing proliferation and inducing apoptosis in head and neck cancer cells, warranting its investigation for use in treatment of head and neck cancer.</p

    A long-term outcome of therapeutic angiogenesis by transplantation of peripheral blood stem cells in critical limb ischemia after interventional revascularization

    Get PDF
    A 61-year-old male patient with atherosclerotic critical limb ischemia in the left leg underwent stent insertion into the left superficial femoral artery. Stenting procedures improved Rutherford grade from III-5 to II-4. Granulocyte colony-stimulating factor stimulated the production of white blood cells over four-fold and mononuclear cells (MNCs) 1.5-fold in the whole blood. Transplantation of 7.9×10 9 autologous MNCs into the left femoral artery rapidly decreased the leg pain intensity, with further improvement of Rutherford grades from II-4 to 0-0 without any side effects. In the four-year follow-up, significant improvement was found in terms of ankle brachial index, from nondetectable to 0.67, and peak systolic velocity, from 14.8 to 36.1 cm/s. Limb salvage and decreased resting pain were the notable outcomes of the treatment

    Transactivation of EGFR by LPS induces COX-2 expression in enterocytes

    Get PDF
    Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC

    TRPA1 Is a Polyunsaturated Fatty Acid Sensor in Mammals

    Get PDF
    Fatty acids can act as important signaling molecules regulating diverse physiological processes. Our understanding, however, of fatty acid signaling mechanisms and receptor targets remains incomplete. Here we show that Transient Receptor Potential Ankyrin 1 (TRPA1), a cation channel expressed in sensory neurons and gut tissues, functions as a sensor of polyunsaturated fatty acids (PUFAs) in vitro and in vivo. PUFAs, containing at least 18 carbon atoms and three unsaturated bonds, activate TRPA1 to excite primary sensory neurons and enteroendocrine cells. Moreover, behavioral aversion to PUFAs is absent in TRPA1-null mice. Further, sustained or repeated agonism with PUFAs leads to TRPA1 desensitization. PUFAs activate TRPA1 non-covalently and independently of known ligand binding domains located in the N-terminus and 5th transmembrane region. PUFA sensitivity is restricted to mammalian (rodent and human) TRPA1 channels, as the drosophila and zebrafish TRPA1 orthologs do not respond to DHA. We propose that PUFA-sensing by mammalian TRPA1 may regulate pain and gastrointestinal functions

    The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence.

    Get PDF
    BACKGROUND: The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx). This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy. METHODOLOGY/PRINCIPAL FINDINGS: To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo. CONCLUSIONS/SIGNIFICANCE: TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design

    Microdevices for extensional rheometry of low viscosity elastic liquids : a review

    Get PDF
    Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations

    Stroke Correlates in Chagasic and Non-Chagasic Cardiomyopathies

    Get PDF
    BACKGROUND: Aging and migration have brought changes to the epidemiology and stroke has been shown to be independently associated with Chagas disease. We studied stroke correlates in cardiomyopathy patients with focus on the chagasic etiology. METHODOLOGY/PRINCIPAL FINDINGS: We performed a cross-sectional review of medical records of 790 patients with a cardiomyopathy. Patients with chagasic (329) and non-chagasic (461) cardiomyopathies were compared. There were 108 stroke cases, significantly more frequent in the Chagas group (17.3% versus 11.1%; p<0.01). Chagasic etiology (odds ratio [OR], 1.79), pacemaker (OR, 2.49), atrial fibrillation (OR, 3.03) and coronary artery disease (OR, 1.92) were stroke predictors in a multivariable analysis of the entire cohort. In a second step, the population was split into those with or without a Chagas-related cardiomyopathy. Univariable post-stratification stroke predictors in the Chagas cohort were pacemaker (OR, 2.73), and coronary artery disease (CAD) (OR, 2.58); while atrial fibrillation (OR, 2.98), age over 55 (OR, 2.92), hypertension (OR, 2.62) and coronary artery disease (OR, 1.94) did so in the non-Chagas cohort. Chagasic stroke patients presented a very high frequency of individuals without any vascular risk factors (40.4%; OR, 4.8). In a post-stratification logistic regression model, stroke remained associated with pacemaker (OR, 2.72) and coronary artery disease (OR, 2.60) in 322 chagasic patients, and with age over 55 (OR, 2.38), atrial fibrillation (OR 3.25) and hypertension (OR 2.12; p = 0.052) in 444 non-chagasic patients. CONCLUSIONS/SIGNIFICANCE: Chagas cardiomyopathy presented both a higher frequency of stroke and an independent association with it. There was a high frequency of strokes without any vascular risk factors in the Chagas as opposed to the non-Chagas cohort. Pacemaker rhythm and CAD were independently associated with stroke in the Chagas group while age over 55 years, hypertension and atrial fibrillation did so in the non-Chagas cardiomyopathies
    corecore