302 research outputs found

    Pancreatic cancer clusters and arsenic-contaminated drinking water wells in Florida

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: We sought to identify high-risk areas of pancreatic cancer incidence, and determine if clusters of persons diagnosed with pancreatic cancer were more likely to be located near arsenic-contaminated drinking water wells. METHODS: A total of 5,707 arsenic samples were collected from December 2000 to May 2008 by the Florida Department of Health, representing more than 5,000 individual privately owned wells. During that period, 0.010 ppm (10 ppb) or greater arsenic levels in private well water were considered as the threshold based on standard of United States Environmental Protection Agency (EPA). Spatial modeling was applied to pancreatic cancer cases diagnosed between 1998-2002 in Florida (n = 11,405). Multivariable logistic regression was used to determine if sociodemographic indicators, smoking history, and proximity to arsenic-contaminated well sites were associated with residence at the time of pancreatic cancer diagnosis occurring within versus outside a cluster. RESULTS: Spatial modeling identified 16 clusters in which 22.6% of all pancreatic cancer cases were located. Cases living within 1 mile of known arsenic-contaminated wells were significantly more likely to be diagnosed within a cluster of pancreatic cancers relative to cases living more than 3 miles from known sites (odds ratio = 2.1 [95% CI = 1.9, 2.4]). CONCLUSIONS: Exposure to arsenic-contaminated drinking water wells may be associated with an increased risk of pancreatic cancer. However, case-control studies are needed in order to confirm the findings of this ecological analysis. These cluster areas may be appropriate to evaluate pancreatic cancer risk factors, and to perform targeted screening and prevention studies.The project was supported by grants from the James and Esther King Biomedical Research Foundation (#06TSP); the Bankhead-Coley Cancer Research Program (#1BG06-341963, #08BN-03), the Florida Department of Health (FDOH); the CDC National Program of Cancer Registries (CDC NPCR); and the European Union ERDF funding (University of Exeter)

    Circulating markers of arterial thrombosis and late-stage age-related macular degeneration: a case-control study.

    No full text
    PURPOSE: The aim of this study was to examine the relation of late-stage age-related macular degeneration (AMD) with markers of systemic atherothrombosis. METHODS: A hospital-based case-control study of AMD was undertaken in London, UK. Cases of AMD (n=81) and controls (n=77) were group matched for age and sex. Standard protocols were used for colour fundus photography and to classify AMD; physical examination included height, weight, history of or treatment for vascular-related diseases and smoking status. Blood samples were taken for measurement of fibrinogen, factor VIIc (FVIIc), factor VIIIc, prothrombin fragment F1.2 (F1.2), tissue plasminogen activator, and von Willebrand factor. Odds ratios from logistic regression analyses of each atherothrombotic marker with AMD were adjusted for age, sex, and established cardiovascular disease risk factors, including smoking, blood pressure, body mass index, and total cholesterol. RESULTS: After adjustment FVIIc and possibly F1.2 were inversely associated with the risk of AMD; per 1 standard deviation increase in these markers the odds ratio were, respectively, 0.62 (95% confidence interval 0.40, 0.95) and 0.71 (0.46, 1.09). None of the other atherothrombotic risk factors appeared to be related to AMD status. There was weak evidence that aspirin is associated with a lower risk of AMD. CONCLUSIONS: This study does not provide strong evidence of associations between AMD and systematic markers of arterial thrombosis, but the potential effects of FVIIc, and F1.2 are worthy of further investigation

    Macular and serum carotenoid concentrations in patients with malabsorption syndromes

    Get PDF
    The carotenoids lutein and zeaxanthin are believed to protect the human macula by absorbing blue light and quenching free radicals. Intestinal malabsorption syndromes such as celiac and Crohn’s disease are known to cause deficiencies of lipid-soluble nutrients. We hypothesized that subjects with nutrient malabsorption syndromes will demonstrate lower carotenoid levels in the macula and blood, and that these lower levels may correlate with early-onset maculopathy. Resonance Raman spectrographic (RRS) measurements of macular carotenoid levels were collected from subjects with and without a history of malabsorption syndromes. Carotenoids were extracted from serum and analyzed by high performance liquid chromatography (HPLC). Subjects with malabsorption (n = 22) had 37% lower levels of macular carotenoids on average versus controls (n = 25, P < 0.001). Malabsorption was not associated with decreased serum carotenoid levels. Convincing signs of early maculopathy were not observed. We conclude that intestinal malabsorption results in lower macular carotenoid levels

    The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence

    Get PDF
    PURPOSE: A review of the role of the carotenoids, lutein and zeaxanthin, and their function in altering the pathogenesis of age-related macular degeneration (AMD). METHODS: Medline and Embase search. RESULTS: Recent evidence introduces the possibility that lutein and zeaxanthin, carotenoids found in a variety of fruits and vegetables may protect against the common eye disease of macular degeneration. This potential and the lack to slow the progression of macular degeneration, has fueled high public interest in the health benefits of these carotenoids and prompted their inclusion in various supplements. The body of evidence supporting a role in this disease ranges from basic studies in experimental animals to various other clinical and epidemiological studies. Whilst some epidemiological studies suggest a beneficial role for carotenoids in the prevention of AMD, others are found to be unrelated to it. Results of some clinical studies indicate that the risk for AMD is reduced when levels of the carotenoids are elevated in the serum or diet, but this correlation is not observed in other studies. Published data concerning the toxicity of the carotenoids or the optimum dosage of these supplements is lacking. CONCLUSION: An intake of dietary supplied nutrients rich in the carotenoids, lutein and zeaxanthin, appears to be beneficial in protecting retinal tissues, but this is not proven. Until scientifically sound knowledge is available we recommend for patients judged to be at risk for AMD to: alter their diet to more dark green leafy vegetables, wear UV protective lenses and a hat when outdoors. Future investigations on the role of nutrition, light exposure, genetics, and combinations of photodynamic therapy with intravitreal steroid (triamcinolone-acetonide) injections hold potential for future treatment possibilities

    Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes

    Get PDF
    Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons(1,2). Several groups have attributed this apparent plasticity to 'transdifferentiation'(3-5). Others, however, have suggested that cell fusion could explain these results(6-9). Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resulting in the formation of multinucleated cells. No evidence of transdifferentiation without fusion was observed in these tissues. These observations provide the first in vivo evidence for cell fusion of BMDCs with neurons and cardiomyocytes, raising the possibility that cell fusion may contribute to the development or maintenance of these key cell types.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62789/1/nature02069.pd

    Metabolic Effects Associated with ICS in Patients with COPD and Comorbid Type 2 Diabetes: A Historical Matched Cohort Study

    Get PDF
    Background Management guidelines for chronic obstructive pulmonary disease (COPD) recommend that inhaled corticosteroids (ICS) are prescribed to patients with the most severe symptoms. However, these guidelines have not been widely implemented by physicians, leading to widespread use of ICS in patients with mild-to-moderate COPD. Of particular concern is the potential risk of worsening diabetic control associated with ICS use. Here we investigate whether ICS therapy in patients with COPD and comorbid type 2 diabetes mellitus (T2DM) has a negative impact on diabetic control, and whether these negative effects are dose-dependent. Methods and Findings This was a historical matched cohort study utilising primary care medical record data from two large UK databases. We selected patients aged >= 40 years with COPD and T2DM, prescribed ICS (n = 1360) or non-ICS therapy (n = 2642) between 2008 and 2012. The primary endpoint was change in HbA(1c) between the baseline and outcome periods. After 1:1 matching, each cohort consisted of 682 patients. Over the 12-18-month outcome period, patients prescribed ICS had significantly greater increases in HbA1c values compared with those prescribed non-ICS therapies; adjusted difference 0.16% (95% confidence interval [Cl]: 0.05-0.27%) in all COPD patients, and 0.25% (95% Cl: 0.10-0.40%) in mild-to-moderate COPD patients. Patients in the ICS cohort also had significantly more diabetes-related general practice visits per year and received more frequent glucose strip prescriptions, compared with those prescribed non-ICS therapies. Patients prescribed higher cumulative doses of ICS (> 250 mg) had greater odds of increased HbA(1c) and/or receiving additional antidiabetic medication, and increased odds of being above the Quality and Outcomes Framework (QOF) target for HbA1c levels, compared with those prescribed lower cumulative doses ( Conclusion For patients with COPD and comorbid T2DM, ICS therapy may have a negative impact on diabetes control. Patients prescribed higher cumulative doses of ICS may be at greater risk of diabetes progression

    Induction of Erythroid Differentiation in Human Erythroleukemia Cells by Depletion of Malic Enzyme 2

    Get PDF
    Malic enzyme 2 (ME2) is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel metabolic target for leukemia therapy
    • …
    corecore