464 research outputs found

    Programmed Protein Self-Assembly Driven by Genetically Encoded Intein-Mediated Native Chemical Ligation

    Get PDF
    Harnessing and controlling self-assembly is an important step in developing proteins as novel biomaterials. With this goal, here we report the design of a general genetically programmed system that covalently concatenates multiple distinct protein domains into specific assembled arrays. It is driven by iterative intein-mediated native chemical ligation (NCL) under mild native conditions. The system uses a series of initially inert recombinant protein fusions that sandwich the protein modules to be ligated between one of a number of different affinity tags and an intein protein domain. Orthogonal activation at opposite termini of compatible protein fusions, via protease and intein cleavage, coupled with sequential mixing directs an irreversible and traceless stepwise assembly process. This gives total control over the composition and arrangement of component proteins within the final product, enabled the limits of the systemreaction efficiency and yieldto be investigated, and led to the production of “functional” assemblies

    A multi-hazard historical catalogue for the city-island-state of Malta (Central Mediterranean)

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordThe city-island-state of Malta is traditionally viewed as a low-hazard country with the lack of a long historical catalogue of extreme events and their impacts acting as an obstacle to formulating evidence-based policies of disaster risk reduction. In this paper, we present the first multi-hazard historical catalogue for Malta which extends from the Miocene to 2019 CE. Drawing on over 3500 documents and points of reference, including historical documentary data, official records and social media posts, we identify at least 1550 hazard events which collectively have caused the loss of at least 662 lives. Recognising that historical materials relating to Malta are complicated by the presence of a strong temporal bias, we establish a four-point reliability indicator and apply this to each of the 1065 recordings, with the result that some 79% show a high degree of reliability. For an island state where there are significant gaps in the knowledge and understanding of the environmental extremes and their impacts over time, this paper addresses and fills these gaps in order to inform the development of public-facing and evidence-based policies of disaster risk reduction in Malta.Liverpool Hope UniversityUniversity of Malt

    Performance analysis of cables with attached tuned-inerter-dampers

    Get PDF
    Cables are structural elements designed to bear tensile forces and experience vibration problems due to their slenderness and low mass. In the field of civil engineering, they are mostly used in bridges where the vibrations are mainly induced by wind, rain, traffic and earthquakes. This paper proposes the use of a tuned-inerter-damper (TID) system, mounted on cables to suppress unwanted vibrations. These are to be attached transversally to the cable, in the vicinity of the support, connected between the deck and the cable. The potential advantage of using a TID system consists in the high apparent mass that can be produced by the inerter. Our analysis showed that the modal damping ratio obtained is much higher than in the case of traditional dampers or tuned mass dampers, leading to an improved overall response. An optimal tuning methodology is also discussed. Numerical results are shown with a cable subjected to both free and forced vibrations and the TID performance is improved when compared with equivalent dampers

    Growth and dislocation studies of β-HMX

    Get PDF
    Background: The defect structure of organic materials is important as it plays a major role in their crystal growth properties. It also can play a subcritical role in “hot-spot” detonation processes of energetics and one such energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX). Results: The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic of mechanical deformation by dislocation slip. Conclusions: Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution. Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays. On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits are associated with pure screw dislocations with b = [010]

    Chronic non-specific low back pain - sub-groups or a single mechanism?

    Get PDF
    Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions for chronic non-specific low back pain indicate limited effectiveness for most commonly applied interventions and approaches. Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of effectiveness is at odds with their clinical experience of managing patients with back pain. A common explanation for this discrepancy is the perceived heterogeneity of patients with chronic non-specific low back pain. It is felt that the effects of treatment may be diluted by the application of a single intervention to a complex, heterogeneous group with diverse treatment needs. This argument presupposes that current treatment is effective when applied to the correct patient. An alternative perspective is that the clinical trials are correct and current treatments have limited efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important that the sub-grouping paradigm is closely examined. This paper argues that there are numerous problems with the sub-grouping approach and that it may not be an important reason for the disappointing results of clinical trials. We propose instead that current treatment may be ineffective because it has been misdirected. Recent evidence that demonstrates changes within the brain in chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of cortical reorganisation and degeneration. This perspective offers interesting insights into the chronic low back pain experience and suggests alternative models of intervention. Summary: The disappointing results of clinical research are commonly explained by the failure of researchers to adequately attend to sub-grouping of the chronic non-specific low back pain population. Alternatively, current approaches may be ineffective and clinicians and researchers may need to radically rethink the nature of the problem and how it should best be managed

    Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT)

    Get PDF
    Polymeric cytotoxic conjugates are being developed with the aim of preferential delivery of the anticancer agent to tumour. MAG-CPT comprises the topoisomerase I inhibitor camptothecin linked to a water-soluble polymeric backbone methacryloylglycynamide ( average molecular weight 18 kDa, 10% CPT by weight). It was administered as a 30-min infusion once every 4 weeks to patients with advanced solid malignancies. The objectives of our study were to determine the maximum tolerated dose, dose-limiting toxicities, and the plasma and urine pharmacokinetics of MAG-CPT, and to document responses to this treatment. The starting dose was 30 mgm(-2) (dose expressed as mg equivalent camptothecin). In total, 23 patients received 47 courses at six dose levels, with a maximum dose of 240 mgm(-2). Dose-limiting toxicities were myelosuppression, neutropaenic sepsis, and diarrhoea. One patient died after cycle 1 MAG-CPT at the maximum dose. The maximum tolerated dose and dose recommended for further clinical study was 200 mgm(-2). The half-lives of both MAG-CPT and released CPT were prolonged (46 days) and measurable levels of MAG-CPT were retrieved from plasma and urine 4 weeks after treatment. However, subsequent pharmacodynamic studies of this agent have led to its withdrawal from clinical development

    Identifying bereaved subjects at risk of complicated grief: Predictive value of questionnaire items in a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bereavement is a condition which most people experience several times during their lives. A small but noteworthy proportion of bereaved individuals experience a syndrome of prolonged psychological distress in relation to bereavement. The aim of the study was to develop a clinical tool to identify bereaved individuals who had a prognosis of complicated grief and to propose a model for a screening tool to identify those at risk of complicated grief applicable among bereaved patients in general practice and palliative care.</p> <p>Methods</p> <p>We examined the responses of 276 newly bereaved individuals to a variety of standardised and ad hoc questionnaire items eight weeks post loss. Inventory of Complicated Grief (ICG-R) was used as a gold standard of distress at six months after bereavement. Receiver operating characteristic (ROC) curves analysis was performed for all scales and items regarding ICG-R score. Sensitivity, specificity and area under curve (AUC) were calculated for scales and items with the most promising ROC curve analyses.</p> <p>Results</p> <p>Beck's Depression Inventory (BDI) was the scale with the highest AUC (0.83) and adding a single item question ('Even while my relative was dying, I felt a sense of purpose in my life') gave a sensitivity of 80% and specificity of 75%. The positive/negative predictive values for this combination of questions were 70% and 85%, respectively. With this screening tool bereaved people could be categorized into three groups where group 1 had 7%, group 2 had 23% and group 3 had 64% propensity of suffering from complicated grief six months post loss.</p> <p>Conclusions</p> <p>This study shows that the BDI in combination with a single item question eight weeks post loss may be used for clinical screening for risk of developing complicated grief after six months. The feasibility and clinical implications of the screening tool has to be tested in a clinical setting.</p

    The Energy Landscapes of Repeat-Containing Proteins: Topology, Cooperativity, and the Folding Funnels of One-Dimensional Architectures

    Get PDF
    Repeat-proteins are made up of near repetitions of 20– to 40–amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi–one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete “domain” (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (ΔGwater) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the “coarse-grained” description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are “poised” at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions
    corecore