179 research outputs found

    Undular tidal bores: Effect of channel constriction and bridge piers

    Get PDF
    A tidal bore may occur in a macro-tidal estuary when the tidal range exceeds 4.5-6 m and the estuary bathymetry amplifies the tidal wave. Its upstream propagation induces a strong mixing of the estuarine waters. The propagation of undular tidal bores was investigated herein to study the effect of bridge piers on the bore propagation and characteristics. Both the tidal bore profile and the turbulence generated by the bore were recorded. The free-surface undulation profiles exhibited a quasi-periodic shape, and the potential energy of the undulations represented up to 30% of the potential energy of the tidal bore. The presence of the channel constriction had a major impact on the free-surface properties. The undular tidal bore lost nearly one third of its potential energy per surface area as it propagated through the channel constriction. The detailed instantaneous velocity measurements showed a marked effect of the tidal bore passage suggesting the upstream advection of energetic events and vorticity "clouds" behind the bore front in both channel configurations: prismatic and with constriction. The turbulence patches were linked to some secondary motions and the proposed mechanisms were consistent with some field observations in the Daly River tidal bore. The findings emphasise the strong mixing induced by the tidal bore processes, and the impact of bridge structures on the phenomenon. © 2010 Springer Science+Business Media B.V

    Multiple interactions between the alpha2C- and beta1-adrenergic receptors influence heart failure survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Persistent stimulation of cardiac β<sub>1</sub>-adrenergic receptors by endogenous norepinephrine promotes heart failure progression. Polymorphisms of this gene are known to alter receptor function or expression, as are polymorphisms of the α<sub>2C</sub>-adrenergic receptor, which regulates norepinephrine release from cardiac presynaptic nerves. The purpose of this study was to investigate possible synergistic effects of polymorphisms of these two intronless genes (<it>ADRB1 </it>and <it>ADRA2C</it>, respectively) on the risk of death/transplant in heart failure patients.</p> <p>Methods</p> <p>Sixteen sequence variations in <it>ADRA2C </it>and 17 sequence variations in <it>ADRB1 </it>were genotyped in a longitudinal study of 655 white heart failure patients. Eleven sequence variations in each gene were polymorphic in the heart failure cohort. Cox proportional hazards modeling was used to identify polymorphisms and potential intra- or intergenic interactions that influenced risk of death or cardiac transplant. A leave-one-out cross-validation method was utilized for internal validation.</p> <p>Results</p> <p>Three polymorphisms in <it>ADRA2C </it>and five polymorphisms in <it>ADRB1 </it>were involved in eight cross-validated epistatic interactions identifying several two-locus genotype classes with significant relative risks ranging from 3.02 to 9.23. There was no evidence of intragenic epistasis. Combining high risk genotype classes across epistatic pairs to take into account linkage disequilibrium, the relative risk of death or transplant was 3.35 (1.82, 6.18) relative to all other genotype classes.</p> <p>Conclusion</p> <p>Multiple polymorphisms act synergistically between the <it>ADRA2C </it>and <it>ADRB1 </it>genes to increase risk of death or cardiac transplant in heart failure patients.</p

    Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements

    Get PDF
    In an open channel, a change from a supercritical to subcritical flow is a strong dissipative process called a hydraulic jump. Herein some new measurements of free-surface fluctuations of the impingement perimeter and integral turbulent time and length scales in the roller are presented with a focus on turbulence in hydraulic jumps with a marked roller. The observations highlighted the fluctuating nature of the impingement perimeter in terms of both longitudinal and transverse locations. The results showed further the close link between the production and detachment of large eddies in jump shear layer, and the longitudinal fluctuations of the jump toe. They highlighted the importance of the impingement perimeter as the origin of the developing shear layer and a source of vorticity. The air–water flow measurements emphasised the intense flow aeration. The turbulent velocity distributions presented a shape similar to a wall jet solution with a marked shear layer downstream of the impingement point. The integral turbulent length scale distributions exhibited a monotonic increase with increasing vertical elevation within 0.2 < Lz/d1 < 0.8 in the shear layer, where Lz is the integral turbulent length scale and d1 the inflow depth, while the integral turbulent time scales were about two orders of magnitude smaller than the period of impingement position longitudinal oscillations

    Beta-2 adrenergic receptor gene polymorphisms Gln27Glu, Arg16Gly in patients with heart failure

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>Beta-2 adrenergic receptor gene polymorphisms Gln27Glu, Arg16Gly and Thr164Ile were suggested to have an effect in heart failure. We evaluated these polymorphisms relative to clinical characteristics and prognosis of alarge cohort of patients with heart failure of different etiologies.</p> <p>Methods -</p> <p>We studied 501 patients with heart failure of different etiologies. Mean age was 58 years (standard deviation 14.4 years), 298 (60%) were men. Polymorphisms were identified by polymerase chain reaction-restriction fragment length polymorphism.</p> <p>Results -</p> <p>During the mean follow-up of 12.6 months (standard deviation 10.3 months), 188 (38%) patients died. Distribution of genotypes of polymorphism Arg16Gly was different relative to body mass index (χ<sup>2 </sup>= 9.797;p = 0.04). Overall the probability of survival was not significantly predicted by genotypes of Gln27Glu, Arg16Gly, or Thr164Ile. Allele and haplotype analysis also did not disclose any significant difference regarding mortality. Exploratory analysis through classification trees pointed towards a potential association between the Gln27Glu polymorphism and mortality in older individuals.</p> <p>Conclusion -</p> <p>In this study sample, we were not able to demonstrate an overall influence of polymorphisms Gln27Glu and Arg16Gly of beta-2 receptor gene on prognosis. Nevertheless, Gln27Glu polymorphism may have a potential predictive value in older individuals.</p

    The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Case-control Genome-Wide Association Studies (GWAS) have identified single nucleotide polymorphisms (SNPs) at the 9p21 locus as risk factors for coronary artery disease (CAD). The locus does not contain a clear candidate gene. Hence, the results of GWAS have raised an intense interest in delineating the basis for the observed association. We analyzed association of 4 SNPs at the 9p21 locus with the severity and progression of coronary atherosclerosis, as determined by serial quantitative coronary angiograms (QCA) in the well-characterized Lipoprotein Coronary Atherosclerosis Study (LCAS) population. The LCAS is a randomized placebo-control longitudinal follow-up study in patients with CAD conducted to test the effects of fluvastatin on progression or regression of coronary atherosclerosis.</p> <p>Methods</p> <p>Extensive plasma lipid levels were measured at the baseline and 2 1/2 years after randomization. Likewise serial QCA was performed at the baseline and upon completion of the study. We genotyped the population for 4 SNPs, previously identified as the susceptibility SNPs for CAD in GWAS, using fluorogenic 5' nuclease assays. We reconstructed the haplotypes using Phase 2, analyzed SNP and haplotype effects using the Thesias software as well as by the conventional statistical methods.</p> <p>Results</p> <p>Only Caucasians were included since they comprised 90% of the study population (332/371 with available DNA sample). The 4 SNPs at the 9p21 locus were in tight linkage disequilibrium, leading to 3 common haplotypes in the LCAS population. We found no significant association between quantitative indices of severity of coronary atherosclerosis, such as minimal lumen diameter and number of coronary lesions or occlusions and the 9p21 SNPs and haplotypes. Likewise, there was no association between quantitative indices of progression of coronary atherosclerosis and the SNPs or haplotypes. Similarly, we found no significant SNP or haplotype effect on severity and progression of coronary atherosclerosis.</p> <p>Conclusion</p> <p>We conclude the 4 SNPs at the 9p21 locus analyzed in this study do not impart major effects on the severity or progression of coronary atherosclerosis. The effect size may be very modest or the observed association of the CAD with SNPs at the 9p21 locus in the case-control GWAS reflect involvement of vascular mechanisms not directly related to the severity or progression of coronary atherosclerosis.</p

    Review of Inverse Laplace Transform Algorithms for Laplace-Space Numerical Approaches

    Full text link
    A boundary element method (BEM) simulation is used to compare the efficiency of numerical inverse Laplace transform strategies, considering general requirements of Laplace-space numerical approaches. The two-dimensional BEM solution is used to solve the Laplace-transformed diffusion equation, producing a time-domain solution after a numerical Laplace transform inversion. Motivated by the needs of numerical methods posed in Laplace-transformed space, we compare five inverse Laplace transform algorithms and discuss implementation techniques to minimize the number of Laplace-space function evaluations. We investigate the ability to calculate a sequence of time domain values using the fewest Laplace-space model evaluations. We find Fourier-series based inversion algorithms work for common time behaviors, are the most robust with respect to free parameters, and allow for straightforward image function evaluation re-use across at least a log cycle of time

    A Linear Framework for Time-Scale Separation in Nonlinear Biochemical Systems

    Get PDF
    Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level

    Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola

    Get PDF
    Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment—some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20°C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere—anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles

    Finite-Step Algorithms for Single-Controller and Perfect Information Stochastic Games

    Full text link
    Abstract. After a brief survey of iterative algorithms for general stochas-tic games, we concentrate on finite-step algorithms for two special classes of stochastic games. They are Single-Controller Stochastic Games and Per-fect Information Stochastic Games. In the case of single-controller games, the transition probabilities depend on the actions of the same player in all states. In perfect information stochastic games, one of the players has exactly one action in each state. Single-controller zero-sum games are effi-ciently solved by linear programming. Non-zero-sum single-controller stochastic games are reducible to linear complementary problems (LCP). In the discounted case they can be modified to fit into the so-called LCPs of Eave’s class L. In the undiscounted case the LCP’s are reducible to Lemke’s copositive plus class. In either case Lemke’s algorithm can be used to find a Nash equilibrium. In the case of discounted zero-sum perfect informa-tion stochastic games, a policy improvement algorithm is presented. Many other classes of stochastic games with orderfield property still await efficient finite-step algorithms. 1
    corecore